Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Electronic Supplementary Information

Three metallic BN polymorphs: 1D multi-threaded conduction in 3D

network

Mei Xiong^a, Zhibin Gao^b, Kun Luo^c, FeiFei Ling^c, YuFei Gao^c, Chong Chen^a, Dongli Yu^c, Zhisheng Zhao^c, Shizhong Wei^{a*}

^a National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471003, China.

^b Department of Physics, National University of Singapore, Singapore 117551,

Republic of Singapore

^c Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.

- Fig. S1 Phonon dispersion of BN polymorphs.
- Fig. S2 Electronic band structures and density of states of BN polymorphs.

Table S1 Space group (S.G.), lattice parameters (Å), and atomic Wyckoff positions of BN polymorphs at ambient pressure.

Table S2 Elastic constants *C*ij (GPa), bulk modulus *B* (GPa), and shear modulus *G* (GPa) of BN polymorphs.

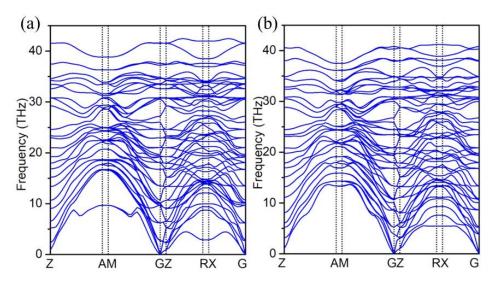
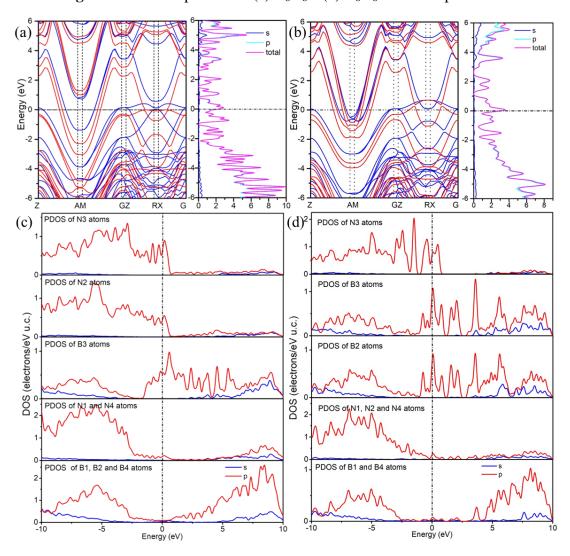



Fig. S1 Phonon dispersion of (a) $B_8N_8\text{-I}$ (b) $B_8N_8\text{-II}$ at zero pressure.

Fig. S2 Electronic properties of onstructed metallic BN structures. (a) band structure of B_8N_8 -I, (b) band structure of B_8N_8 -II, (c) PDOS of B_8N_8 -I, (d) PDOS of B_8N_8 -II.

Table S1. Space group (S.G.), lattice parameters (Å), and atomic Wyckoff positions of BN polymorphs at ambient pressure.

Structure	S.G.	lattice parameters	Atomic positions	
B ₈ N ₈ -I	P42mc		B1 2a (0,0,0.886),	
			B2 2c (0,0.5,0.748),	
			B3 2a (0,0,0.611);	
		a = b = 2.55 Å, c = 15.86 Å;	B4 2b (0.5,0.5,0.5);	
		$\alpha=\beta=\gamma=90^\circ$	N1 2c (0.5,0,0.561);	
			N2 2a (0,0,0.702);	
			N3 2c (0,0.5,0.836);	
			N4 2c (0.5,0,0.947)	
B ₈ N ₈ -II	P42mc		B1 2c (0.5,0,0.561);	
			B2 2a (0,0,0.702);	
			B3 2c (0,0.5,0.836);	
		a = b = 2.55 Å, c = 15.91 Å;	B4 2c (0.5,0,0.947);	
		$\alpha=\beta=\gamma=90^\circ$	N1 2a (0,0,0.886),	
			N2 2c (0,0.5,0.748),	
			N3 2a (0,0,0.611);	
			N4 2b (0.5,0.5,0.5);	

Table S2. Elastic constants C_{ij} (GPa), bulk modulus B (GPa), and shear modulus G (GPa) of BN polymorphs.

Structure	C_{11}	C_{33}	C_{44}	C_{66}	C_{12}	C_{13}	В	G
B ₈ N ₈ -I	731.4	916.7	135.5	113.4	37.2	138.0	329.6	192.1
B ₈ N ₈ -II	695.7	898.8	122.5	109.7	52.2	149.6	327.4	178.9