Electronic Supplementary Information

First Principles Investigation of Dissociative Adsorption of H₂ during CO₂ Hydrogenation over

Cubic and Hexagonal In₂O₃ Catalysts

Bin Qin,^{a,b} Shenggang Li,^{a,c,*}

^a CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China

^b University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China

^c School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China

*E-mail: lisg@sari.ac.cn

This supplementary information is divided into two sections, briefly summarized below.

Section 1: Additional figures:

Figure S1. The slab models of the $h-\ln_2O_3(104)$ surface with two, four and six layers.

Figure S2. $E_{f,H2}$ (eV) for the In_2O_3 surfaces with different numbers of surface O_v .

Figure S3. $E_{f,CO}$ (eV) for the In_2O_3 surfaces with different numbers of surface O_v .

Figure S4. $E_{f,O2}$ (eV) for the *h*-In₂O₃(012) surface with different orders of removing the surface O atoms.

Figure S5. $E_{f,O2}$ (eV) for the *h*-In₂O₃(104) surface with different orders of removing the surface O atoms.

Figure S6. Optimized structures of the defective In_2O_3 surfaces with an O_v .

Figure S7. Potential energy profile for the hydride migration.

Figure S8. Dissociative adsorption energies of H₂.

Section 2: Additional tables.

Table S1. Formation energies of single O_v on the In_2O_3 surfaces.

Table S2. Formation energies of single O_{ν} and dissociative adsorption energies of H_2 on

the $h-\ln_2O_3(104)$ surfaces with two, four and six layers.

Table S3. Oxygen vacancy distributions at different O_v coverages.

Table S4. Oxygen vacancy distributions for the defective $h-In_2O_3(012)$ surfaces with

different orders of removing the surface O atoms.

Table S5. Oxygen vacancy distributions for the defective h-In₂O₃(104) surfaces with

different orders of removing the surface O atoms.

Table S6. Atomic Bader charges for the homolytic dissociative adsorption of H₂ on the defective c-In₂O₃(111) surface with θ = 1 ML.

Table S7. Atomic Bader charges for the *c*-In₂O₃(110) surface.

Table S8. Atomic Bader charges for the $h-In_2O_3(012)$ surface.

Table S9. Atomic Bader charges for the h-In₂O₃(104) surface.

Table S10. E_f of the *c*- In_2O_3 surfaces.

Table S11. E_f of the *h*-In₂O₃(012) surface.

Table S12. E_f of the *h*-In₂O₃(104) surface.

Table S13. Optimized fractional coordinates for bulk, perfect, and defective surfaces ofthe In_2O_3 catalysts.

Figure S1. The slab models of the h-In₂O₃(104) surface with two, four and six layers.

Figure S2. $E_{f,H2}$ (eV) for the In_2O_3 surfaces with different numbers of surface O_v .

Figure S3. $E_{f,CO}$ (eV) for the In_2O_3 surfaces with different numbers of surface O_v .

Figure S4. $E_{f,O2}$ (eV) for the *h*-In₂O₃(012) surface with different orders of removing the surface O atoms.

Figure S5. $E_{f,O2}$ (eV) for the *h*-In₂O₃(104) surface with different orders of removing the surface O atoms.

Figure S6. Optimized structures of the defective surfaces with an O_v for (a) $c-In_2O_3(111)$, (b) $c-In_2O_3(110)$, (c) $h-In_2O_3(012)$, and (d) $h-In_2O_3(104)$.

Figure S7. Potential energy profile (E_e : eV) for the hydride migration from an In site to an O site on the perfect In_2O_3 surfaces.

Figure S8. Homolytic and heterolytic dissociative adsorption energies (E_e : eV) of H_2 on the defective and perfect In_2O_3 surfaces.

Section 2.

Table S1. Formation e	energies (eV) of single O	, on the c-In ₂ Oa	and <i>h</i> -In ₂ O ₃ surfaces.
	- 0	/ 0	<u>2</u>	2

Surface	Reaction	0 _{v1}	0 _{v2}	0 _{v3}	0 _{v4}	0 _{v5}	0 _{v6}	0 _{v7}	0 _{v8}	0 _{v9}	O _{v10}	O _{v11}	0 _{v12}
<i>c</i> -In ₂ O ₃ (111)	Thermal desorption	1.84	2.27	1.84	2.58	2.27	2.26	2.71	1.99	2.71	2.58	2.71	2.58
	H_2 reduction	-0.69	-0.26	-0.69	0.05	-0.26	-0.27	0.17	-0.54	0.18	0.05	0.17	0.05
	CO reduction	-1.42	-0.99	-1.42	-0.68	-0.99	-1.00	-0.56	-1.27	-0.55	-0.68	-0.56	-0.68
	Thermal desorption	2.12	2.39	2.41	2.42	2.17	2.14	2.42	2.17	2.14	2.12	2.39	2.41
<i>c</i> -In ₂ O ₃ (110)	H ₂ reduction	-0.41	-0.15	-0.12	-0.12	-0.37	-0.39	-0.12	-0.37	-0.39	-0.41	-0.15	-0.12
	CO reduction	-1.14	-0.87	-0.85	-0.85	-1.10	-1.12	-0.85	-1.10	-1.12	-1.14	-0.87	-0.85
	Thermal desorption	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45				
<i>h</i> -In ₂ O ₃ (012)	H_2 reduction	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08				
	CO reduction	-0.81	-0.81	-0.81	-0.81	-0.81	-0.81	-0.81	-0.81				
<i>h</i> -In ₂ O ₃ (104)	Thermal desorption	1.46	1.46	1.91	1.91	1.47	1.47						
	H ₂ reduction	-1.07	-1.07	-0.63	-0.63	-1.07	-1.07						
	CO reduction	-1.80	-1.80	-1.36	-1.36	-1.80	-1.80						

Table S2. Formation energies of single O_v and dissociative adsorption energies of H_2 on the h-In₂ $O_3(104)$ surfaces with two, four and six layers.

<i>h</i> -In₂C	D ₃ (104)	O _v formation energy Dissociative adsorption energy					sorption energy				
Layers	Atoms	O _{v1}	0 _{v2}	O _{v3}	O _{v4}	0 _{v5}	0 _{v6}	$H_{2_homo_O_P}^*$	$H_{2_heter_P}^*$	$H_{2_homo_O_D}^*$	$H_{2_heter_D}$ *
2	40	1.57	1.57	2.14	2.14	1.57	1.57	-2.09	-1.50	-2.10	-0.91
4	80	1.46	1.46	1.91	1.91	1.47	1.47	-2.37	-1.70	-1.96	-0.95
6	120	1.39	1.39	1.84	1.84	1.39	1.39	-2.47	-1.72	-1.96	-0.97

Table S3. Oxygen vacancy distributions for the defective In_2O_3 surfaces at different O_v coverages corresponding to Figures 2, S2, and

S3.

Number		Oxygen vacancies									
Number	<i>c</i> -In ₂ O ₃ (111)	<i>c</i> -In ₂ O ₃ (110)	<i>h</i> -In ₂ O ₃ (012)	<i>h</i> -In ₂ O ₃ (104)							
1	0 _{v1}	O _{v1}	O _{v5}	O _{v1}							
2	$O_{v1} O_{v3}$	$O_{v1} O_{v2}$	$O_{v5} O_{v6}$	O _{v1} O _{v2}							
3	$O_{v1} O_{v3} O_{v8}$	$O_{v1} O_{v2} O_{v5}$	$O_{v5} O_{v6} O_{v7}$	$O_{v1} O_{v2} O_{v5}$							
4	$O_{v1} \ O_{v3} \ O_{v8} \ O_{v2}$	$O_{v1} O_{v2} O_{v5} O_{v6}$	$O_{v5} \ O_{v6} \ O_{v7} \ O_{v8}$	$O_{v1} O_{v2} O_{v5} O_{v6}$							
5	$O_{v1} \ O_{v3} \ O_{v8} \ O_{v2} \ O_{v5}$	$O_{v1}O_{v2}O_{v5}O_{v6}O_{v8}$	$O_{v5} \ O_{v6} \ O_{v7} \ O_{v8} \ O_{v1}$	$O_{v1} \ O_{v2} \ O_{v5} \ O_{v6} \ O_{v3}$							
6	$O_{v1} O_{v3} O_{v8} O_{v2} O_{v5} O_{v6}$	$O_{v1}O_{v2}O_{v5}O_{v6}O_{v8}O_{v9}$	$O_{v5}O_{v6}O_{v7}O_{v8}O_{v1}O_{v2}$	$O_{v1} O_{v2} O_{v5} O_{v6} O_{v3} O_{v4}$							
7	$O_{v1} O_{v3} O_{v8} O_{v2} O_{v5} O_{v6} O_{v4}$	$O_{v1}O_{v2}O_{v5}O_{v6}O_{v8}O_{v9}O_{v10}$	$O_{v5} O_{v6} O_{v7} O_{v8} O_{v1} O_{v2} O_{v3}$								
8	$O_{v1} \ O_{v3} \ O_{v8} \ O_{v2} \ O_{v5} \ O_{v6} \ O_{v4} \ O_{v10}$	$O_{v1}O_{v2}O_{v5}O_{v6}O_{v8}O_{v9}O_{v10}O_{v11}$	$O_{v5} O_{v6} O_{v7} O_{v8} O_{v1} O_{v2} O_{v3} O_{v4}$								
9	$O_{v1} O_{v3} O_{v8} O_{v2} O_{v5} O_{v6} O_{v4} O_{v10} O_{v12}$	$O_{v1}O_{v2}O_{v5}O_{v6}O_{v8}O_{v9}O_{v10}O_{v11}O_{v3}$									
10	$O_{v1} O_{v3} O_{v8} O_{v2} O_{v5} O_{v6} O_{v4} O_{v10} O_{v12}$	$O_{v1}O_{v2}O_{v5}O_{v6}O_{v8}O_{v9}O_{v10}O_{v11}O_{v3}$									
10	O _{v7}	O _{v4}									
11	$O_{v1} O_{v3} O_{v8} O_{v2} O_{v5} O_{v6} O_{v4} O_{v10} O_{v12}$	$O_{v1}O_{v2}O_{v5}O_{v6}O_{v8}O_{v9}O_{v10}O_{v11}O_{v3}$									
11	O _{v7} O _{v9}	$O_{v4} O_{v7}$									
10	$O_{v1} O_{v3} O_{v8} O_{v2} O_{v5} O_{v6} O_{v4} O_{v10} O_{v12}$	$O_{v1}O_{v2}O_{v5}O_{v6}O_{v8}O_{v9}O_{v10}O_{v11}O_{v3}$									
12	$O_{v7} O_{v9} O_{v11}$	$O_{v4} O_{v7} O_{v12}$									

Table S4. Oxygen vacancy distributions for the defective h-In₂O₃(012) surfaces with different orders of removing the surface O atoms corresponding to Figures S4.

Number		Oxygen vacancies	
Number	order1	order2	order3
1	0 _{v5}	0 _{v1}	0 _{v2}
2	$O_{v5} O_{v6}$	$O_{v1} O_{v3}$	$O_{v2} O_{v1}$
3	$O_{v5} O_{v6} O_{v7}$	$O_{v1} O_{v3} O_{v5}$	$O_{v2} O_{v1} O_{v6}$
4	$O_{v5} \; O_{v6} \; O_{v7} \; O_{v8}$	$O_{v1} O_{v3} O_{v5} O_{v7}$	$O_{v2} \ O_{v1} \ O_{v6} \ O_{v5}$
5	$O_{v5} \; O_{v6} \; O_{v7} \; O_{v8} \; O_{v1}$	$O_{v1}O_{v3}O_{v5}O_{v7}O_{v2}$	$O_{v2} \ O_{v1} \ O_{v6} \ O_{v5} \ O_{v3}$
6	$O_{v5} O_{v6} O_{v7} O_{v8} O_{v1} O_{v2}$	$O_{v1} O_{v3} O_{v5} O_{v7} O_{v2} O_{v4}$	$O_{v2} O_{v1} O_{v6} O_{v5} O_{v3} O_{v4}$
7	$O_{v5} O_{v6} O_{v7} O_{v8} O_{v1} O_{v2} O_{v3}$	$O_{v1}O_{v3}O_{v5}O_{v7}O_{v2}O_{v4}O_{v6}$	$O_{v2} O_{v1} O_{v6} O_{v5} O_{v3} O_{v4} O_{v7}$
8	$O_{v5} O_{v6} O_{v7} O_{v8} O_{v1} O_{v2} O_{v3} O_{v4}$	$O_{v1}O_{v3}O_{v5}O_{v7}O_{v2}O_{v4}O_{v6}O_{v8}$	$O_{v2}O_{v1}O_{v6}O_{v5}O_{v3}O_{v4}O_{v7}O_{v8}$

Table S5. Oxygen vacancy distributions for the defective h-In₂O₃(104) surfaces with different orders of removing the surface O atoms

corresponding t	to Figures S5.
-----------------	----------------

Number			Oxygen vacancies		
Number	order1	order2	order3	order4	order5
1	O _{v1}	O _{v1}	O _{v6}	O _{v3}	0 _{v3}
2	$O_{v1} O_{v2}$	$O_{v1} O_{v2}$	$O_{v6} O_{v5}$	O _{v3} O _{v4}	$O_{v3} O_{v5}$
3	$O_{v1} O_{v2} O_{v5}$	$O_{v1} O_{v2} O_{v3}$	$O_{v6} O_{v5} O_{v4}$	$O_{v3} O_{v4} O_{v1}$	$O_{v3} O_{v5} O_{v6}$
4	$O_{v1} O_{v2} O_{v5} O_{v6}$	$O_{v1} O_{v2} O_{v3} O_{v4}$	$O_{v6}\;O_{v5}\;O_{v4}O_{v3}$	$O_{v3} \; O_{v4} \; O_{v1} \; O_{v2}$	$O_{v3} O_{v5} O_{v6} O_{v1}$
5	$O_{v1}O_{v2}O_{v5}O_{v6}O_{v3}$	$O_{v1} O_{v2} O_{v3} O_{v4} O_{v5}$	$O_{v6} \; O_{v5} \; O_{v4} \; O_{v3} \; O_{v2}$	$O_{v3} \; O_{v4} \; O_{v1} \; O_{v2} \; O_{v5}$	$O_{v3} O_{v5} O_{v6} O_{v1} O_{v2}$
6	$O_{v1}O_{v2}O_{v5}O_{v6}O_{v3}O_{v4}$	$O_{v1}O_{v2}O_{v3}O_{v4}O_{v5}O_{v6}$	$O_{v6} \ O_{v5} \ O_{v4} \ O_{v3} \ O_{v2} \ O_{v1}$	$O_{v3} O_{v4} O_{v1} O_{v2} O_{v5} O_{v6}$	$O_{v3}O_{v5}O_{v6}O_{v1}O_{v2}O_{v4}$

Charge	In ₇	In ₈	In ₁₁	Ha	H _b
*_D	+0.78	+0.85	+1.40		
TS1	+0.78	+1.13	+1.29	-0.14	-0.08
H _{2_homo_ln_D_1} *	+0.76	+1.36	+1.46	-0.27	-0.23
TS2	+1.09	+0.99	+1.48	-0.27	-0.23
H _{2_homo_In_D_2} *	+1.38	+0.76	+1.49	-0.28	-0.27

Table S6. Atomic Bader charges (in |e|) for the homolytic dissociative adsorption of H₂ on the defective *c*-In₂O₃(111) surface with $\theta = 1$ ML followed by further hydride migration.

θ(ML)	Charge	ln_1	In ₂	ln₃	In ₄	O ₄	O ₅	O ₆
0	Perfect	+1.74	+1.71	+1.71	+1.75	-1.13	-1.13	-1.15
1/12	O _{v4}	+1.72	+1.67	+1.04	+1.47		-1.12	-1.13
1	*_D	+0.29	+0.51	+0.61	+0.56			

Table S7. Atomic Bader charges (in |e|) for the *c*-In₂O₃(110) surface.

θ(ML)	Charge	In ₅	In ₆	In ₇	In ₈	O ₅	O ₆	O ₇	O ₈
0	Perfect	+1.75	+1.75	+1.75	+1.75	-1.14	-1.14	-1.14	-1.14
1/8	0 _{v6}	+1.73	+1.50	+1.24	+1.73	-1.12		-1.13	-1.14
1	*_D	+0.74	+0.74	+0.74	+0.74				

Table S8. Atomic Bader charges (in |e|) for the h-In₂O₃(012) surface.

θ(ML)	Charge	In ₂	In ₆	In ₇	O ₁	O ₃	O ₅	O ₆
0	Perfect	+1.70	+1.74	+1.76	-1.13	-1.14	-1.04	-1.04
1/6	O _{v3}	+1.23	+1.65	+1.63	-1.15		-1.11	-1.05
1	*_D	+0.69	+0.68	+1.24				

Table S9. Atomic Bader charges (in |e|) for the h-In₂O₃(104) surface.

	E _f (θ)										
θ (ML)	C-	In ₂ O ₃ (111)		C-	In ₂ O ₃ (110)						
	Thermal desorption	H_2 reduction	CO reduction	Thermal desorption	H_2 reduction	CO reduction					
1/12	1.84	-0.69	-1.42	2.12	-0.41	-1.14					
1/6	1.46	-0.15	-0.88	2.17	-0.36	-1.09					
1/4	2.68	0.14	-0.59	2.21	-0.32	-1.05					
1/3	2.65	0.11	-0.62	2.26	-0.27	-1.00					
5/12	2.65	0.12	-0.61	2.36	-0.17	-0.90					
1/2	2.65	0.11	-0.62	2.39	-0.14	-0.87					
7/12	2.75	0.22	-0.51	2.33	-0.20	-0.93					
2/3	2.74	0.20	-0.53	2.39	-0.14	-0.87					
3/4	2.67	0.14	-0.59	2.40	-0.14	-0.87					
5/6	2.67	0.14	-0.59	2.43	-0.10	-0.83					
11/12	2.68	0.14	-0.59	2.43	-0.10	-0.83					
1	2.67	0.14	-0.59	2.47	-0.07	-0.80					

Table S10. E_f (eV) of the $c-In_2O_3(110)$ and $c-In_2O_3(111)$ surfaces with different surface O_v coverages by thermal desorption of molecular O_2 , H_2 and CO reduction corresponding to Figures 2, S2, and S3.

		Ε _f (θ)	
	Thermal desorption	H ₂ reduction	CO reduction
1/8	2.45	-0.08	-0.81
1/4	2.31	-0.22	-0.95
3/8	2.24	-0.30	-1.03
1/2	2.06	-0.47	-1.20
5/8	2.22	-0.31	-1.04
3/4	2.25	-0.29	-1.02
7/8	2.26	-0.28	-1.01
1	2.19	-0.35	-1.08

Table S11. E_f (eV) of h-In₂O₃(012) surface with different surface O_v coverages by thermal desorption of molecular O₂, H₂ and CO reduction corresponding to Figures 2, S2, and S3.

A (ML)	E _f (θ)		
	Thermal desorption	H ₂ reduction	CO reduction
1/6	1.46	-1.07	-1.80
1/3	1.79	-0.75	-1.48
1/2	2.32	-0.21	-0.94
2/3	2.22	-0.32	-1.05
5/6	2.24	-0.29	-1.02
1	2.40	-0.14	-0.87

Table S12. E_f (eV) of h-In₂O₃(104) surface with different surface O_v coverages by thermal desorption of molecular O₂, H₂ and CO reduction corresponding to Figures 2, S2, and S3.

Table S13. Optimized fractional coordinates for bulk, perfect, and defective surfaces of the

In₂O₃ catalysts.

Bulk lattice of *c*-In₂O₃

O In 1.00000000000000 -5.1068445150936430 5.1068445150936430 5.1068445150936430 5.1068445150936430 -5.1068445150936430 5.1068445150936430 5.1068445150936430 5.1068445150936430 -5.1068445150936430 O In 24 16 Direct 0.4918972148887473 0.2273956030203039 0.4550331441780605 0.2723624588422509 0.0368640707106870 0.0449668558219468 0.2276375411577492 0.2726043969796959 0.7645016118684504 0.0081027851112526 0.4631359292893130 0.7354983881315496 0.4550331441780605 0.4918972148887473 0.2273956030203039 0.0449668558219468 0.2723624588422509 0.0368640707106870 0.7645016118684504 0.2276375411577492 0.2726043969796959 0.7354983881315496 0.0081027851112526 0.4631359292893130 0.2273956030203039 0.4550331441780605 0.4918972148887473 0.0368640707106870 0.0449668558219468 0.2723624588422509 0.2726043969796959 0.7645016118684504 0.2276375411577492 0.4631359292893130 0.7354983881315496 0.0081027851112526 0.5081027851112527 0.7726043969796961 0.5449668558219469 0.7276375411577495 0.9631359292893128 0.9550331441780602 0.7723624588422505 0.7273956030203039 0.2354983881315496 0.9918972148887473 0.5368640707106872 0.2645016118684504 0.5449668558219469 0.5081027851112527 0.7726043969796961 0.9550331441780602 0.7276375411577495 0.9631359292893128 0.2354983881315496 0.7723624588422505 0.7273956030203039 0.2645016118684504 0.9918972148887473 0.5368640707106872 0.7726043969796961 0.5449668558219469 0.5081027851112527 0.9631359292893128 0.9550331441780602 0.7276375411577495 0.7273956030203039 0.2354983881315496 0.7723624588422505 0.5368640707106872 0.2645016118684504 0.9918972148887473 0.25000000000000 0.5340565392622233 0.2840565392622232 0.75000000000000 0.9659434607377766 0.2159434607377768 0.2840565392622232 0.25000000000000 0.5340565392622233 0.2159434607377768 0.75000000000000 0.9659434607377766 0.5340565392622233 0.2840565392622232 0.2500000000000000 0.9659434607377767 0.2159434607377768 0.7500000000000000 0.75000000000000 0.4659434607377768 0.7159434607377766 0.25000000000000 0.0340565392622232 0.7840565392622234 0.7159434607377767 0.75000000000000 0.4659434607377768 0.7840565392622234 0.250000000000000 0.0340565392622232

Bulk lattice of *h*-In₂O₃

O In

1.00000000000000

0.7040602707237176 0.7040602707463151 0.2500000000000000 0.3707272707237215 0.0373932707463184 0.583333000000032 0.0373932707237209 0.3707272707463193 0.91666669999999968 0.2959397292762824 0.000000000225975 0.2500000000000000 0.9626067292762792 0.3333330000226007 0.583333000000032 0.6292727292762785 0.66666670000226013 0.91666669999999968 0.0000000000000 0.2959397292310730 0.2500000000000000 0.6666669999999968 0.6292727292310689 0.583333000000032 0.333333000000032 0.9626067292310697 0.91666669999999968 0.2959397292762824 0.2959397292536846 0.7500000000000000 0.9626067292762792 0.6292727292536811 0.083333000000032 0.6292727292762785 0.9626067292536817 0.41666669999999968 0.7040602707237176 0.9999999999773955 0.7500000000000000 0.3707272707237215 0.3333329999774057 0.0833330000000032 0.0373932707237209 0.66666669999773923 0.41666669999999968 0.0000000000000 0.7040602707689271 0.7500000000000000 0.6666669999999968 0.0373932707689302 0.083333000000032 0.333333000000032 0.3707272707689309 0.4166669999999968 0.6666669999999968 0.333333000000032 0.4755713781864326 0.333333000000032 0.6666669999999968 0.8089053781864333 0.333333000000032 0.6666669999999968 0.0244286218135674 0.6666669999999968 0.333333000000032 0.6910946218135667 0.333333000000032 0.6666669999999968 0.5244286218135674 0.6666669999999968 0.333333000000032 0.1910946218135667 0.6666669999999968 0.333333000000032 0.9755713781864326 0.333333000000032 0.666666999999968 0.3089053781864333 0.000000000000000 - 0.00000000000000 0.6422383781864365

Perfect c-In₂O₃(111) surface

O In

14 4442000000000000000000000000000000000		
7 2221 4000000000		
-7.22214999999999999	2 0 0000000000000000000000000000000000	
0.000000000000000	2 0.00000000000000000000000000000000000	21 13.0370999999999999988
0 111		
48 32 Direct		
DIRECT	0.0150611044062700	0 2522802518222708
0.1451191125797991	0.8150011844803780	0.3523893518322708
0.4745081007858450	0.4835909055908927	0.5445050780871995
0.7731049901000502	0.490/9/2508091523	0.5/393231288110/5
0.42/04242081/93/0	0.8244213359407512	0.3559159550149909
0.2795475105821420	0.2/18925628442/99	0.5/11498691509033
0.9343982005408350	0.5901003290441189	0.3031230384895437
0.4863633054828699	0.7401202402613152	0.5294537647649006
0.1010298084752002	0.0747591310127611	0.3288250643606457
0.1848408275339953	0.000020012023339	0.3523609980944265
0.5164504550297209	0.9909366140020944	0.5445695470243517
0.5090858049985219	0.2823390678869893	0.5739462131221145
0.1/500/3048135539	0.0025952240770861	0.3558885554469269
0.7280871746855950	0.00/65808865/8169	0.5/11994148/08/26
0.4038/35441802321	0.3382205173510777	0.3030487854852434
0.2598822053380366	0.7461741799504441	0.5294385211410014
0.9251169737365404	0.0862464517577624	0.3288666041801958
0.0001100224651001	0.8548323119122059	0.3523548538195427
0.0091108224651091	0.5255405604516186	0.5446042871362627
0.7176643052387186	0.2267698345486424	0.5739506685467759
0.3973967415404153	0.5/2966652/559594	0.3559318618263451
0.9923917148194963	0./2052/3/3806/028	0.5/11869284641/28
0.001/41801/40920/	0.0656421059189875	0.3630604444703220
0.253/20/216141315	0.5136542467106934	0.5294810842064561
0.913/964939943020	0.8389527015043173	0.3288806525914126
0.1882144300108307	0.851605456891/6//	0.6476090143045862
0.8588259307761310	0.1830/52588/21390	0.4554328640696589
0.56016/9091403405	0.1/58690386298670	0.4260654645360022
0.9062908927395539	0.8422448552269628	0.6440825792518169
0.053/859215261932	0.3947739375514592	0.4288491109453267
0.3989353443878660	0.0/0500254/399/08	0.6368749296532140
0.8469/01553306153	0.9265465074583574	0.4705448745027783
0.1/230365/4435091	0.5919075213819817	0.6/11/33350325196
0.1484925770040109	0.3366344144914056	0.6476375423973313
0.8168830513734139	0.6/5/2963081/6896	0.4554299252847627
0.8242481697729281	0.3843281255158060	0.4260513792834565
0.15//263815284151	0.0640/12353123064	0.04410901/2928/15
0.005240104481/411	0.6590083188329272	0.428800024/944/66
0.9294598648030115	0.3284461525184541	0.0369493372502862
0.0734515001319062	0.9204925863130324	0.4705597599720628

0.4082167724996504 0.5804201720037694 0.6711316214119617 0.6633717620740729 0.8118337754783047 0.6476438838017134 0.3242229664233381 0.1411263039265593 0.4553936786738689 0.6156693195810837 0.4398968642082740 0.4260478073640942 0.9359369615020480 0.0936998448943808 0.6440668253929895 0.3409410748791514 0.9461391507016341 0.4288115414490933 0.6715913203346564 0.6010229826157746 0.6369380489312075 0.0796128615656489 0.1530122870783333 0.4705174965900786 0.4195368317631099 0.8277138274413505 0.6711180359947670 0.1135268428242092 0.6840967059904850 0.6080323825819671 0.5494773824643627 0.1525980020713431 0.5757555821792084 0.2299847807024728 0.4909883742782011 0.3885313738383915 0.7745782340008217 0.0129384258572414 0.4012757643355346 0.3159618195813228 0.4294407622415121 0.6080097886301308 0.8474273917403311 0.3968882049052914 0.5757461204140754 0.5090119691600216 0.7389818481584263 0.3885146396380077 0.9870484885231411 0.7616731147062514 0.4013234579775883 0.5705476709803482 0.8865016168325196 0.6080319213654766 0.6031015508653850 0.4505171811058692 0.5757566488034462 0.2610125294899167 0.7699858748460880 0.3885058790213879 0.2383283052777964 0.2253621083253492 0.4012163307200562 0.2198066867426140 0.9825699265258531 0.3919659109661390 0.7838566733651974 0.5140688389704395 0.4242424329342478 0.1033486995890565 0.1756780603454133 0.6114672197053368 0.5587549984686750 0.6537277989193678 0.5987225785700546 0.0173717296289739 0.2372256715746610 0.3919889331705346 0.4859065283543559 0.2697783320401079 0.4242519095287691 0.8243213547276370 0.9276847346297245 0.6114840876655905 0.3462847545295096 0.9049933972650959 0.5986750492685645 0.7627858378117667 0.7801649424527631 0.3919670566774948 0.7302328239803815 0.2161494272931610 0.4242406867002162 0.0723208423386802 0.8966806475447578 0.6114923197410674 0.0950052178927374 0.4413045172122805 0.5987822126965801 0.0133189466501837 0.5134664098836342 0.4014524836026969 -0.0000134424194899 0.0000128047425126 0.3856068391987680 0.4865728541781378 0.4998348807500778 0.4014152223935677 0.5001452543589615 -0.0132919849319449 0.4014330177903410 0.8331865123529363 0.6799577136103208 0.5985672021555198 0.3200145814885574 0.1532001906961715 0.5985455920803422 0.3333469423009668 0.6666537255870266 0.6143917256905647 0.8467613361864128 0.1668323100570823 0.5985836424314855

Perfect c-In₂O₃(110) surface

O In

1.00000000000000		
10.21369999999999993	0.00000000000000000	0.0000000000000000
0.000000000000000	14.4443000000000001	0.00000000000000000
0.000000000000010	0.000000000000010	15.9873999999999992

O In

48 32

Direct

0.6089400700035356	0.1822731037628693	0.4373340599499958
0.1089400700035287	0.6822731037628628	0.4373340599499958
0.1098635696405312	0.9648202665210710	0.4557218489944125
0.6098635696405386	0.4648202665210777	0.4557218489944125
0.3260158848204119	0.5823517933990443	0.3464058512136479
0.8260158848204117	0.0823517933990442	0.3464058512136479
0.8260165533494214	0.5646986318546442	0.5356022490851571
0.3260165533494212	0.0646986318546517	0.5356022490851571
0.1000654455551523	0.9669355057171738	0.6658311982623719
0.6000654455551518	0.4669355057171738	0.6658311982623719
0.3277148308584424	0.8182065896043388	0.3470937678917306
0.8277148308584492	0.3182065896043391	0.3470937678917306
0.6039131611620581	0.6849929555452974	0.6821476541741593
0.1039131611620499	0.1849929555452977	0.6821476541741593
0.8347048508428668	0.3288992549281818	0.5391450544755959
0.3347048508428660	0.8288992549281817	0.5391450544755959
0.5602093538681556	0.6967361667741742	0.4608642755400719
0.0602093538681557	0.1967361667741740	0.4608642755400719
0.3885738083083067	0.0667711326965294	0.3219931242158511
0.8885738083083068	0.5667711326965224	0.3219931242158511
0.8755401135345799	0.0848799081835661	0.5578180759688367
0.3755401135345729	0.5848799081835589	0.5578180759688367
0.0603920963670669	0.4585366411994488	0.4420449490725661
0.5603920963670670	0.9585366411994491	0.4420449490725661
0.7970055770825339	0.2147458919860784	0.6879281351516956
0.2970055770825333	0.7147458919860715	0.6879281351516956
0.3112744133644468	0.4368428112910744	0.6787920119436518
0.8112744133644471	0.9368428112910744	0.6787920119436518
0.0940827905306655	0.3205982949537576	0.3142534981492986
0.5940827905306730	0.8205982949537579	0.3142534981492986
0.6064814723883095	0.8390647376946265	0.5749791398425733
0.1064814723883022	0.3390647376946265	0.5749791398425733
0.3327774280501923	0.4267686046114946	0.4593535329538815
0.8327774280501992	0.9267686046114880	0.4593535329538815
0.0917559926221567	0.0849302195868723	0.3124130972075024
0.5917559926221632	0.5849302195868651	0.3124130972075024
0.8287729051732498	0.7206812054799273	0.4374050979697712
0.3287729051732424	0.2206812054799348	0.4374050979697712
0.5963936058782431	0.0700315364852393	0.5836564198604666
0.0963936058782438	0.5700315364852387	0.5836564198604666
0.8731101025887897	0.6974153326215452	0.6693340976838412
0.3731101025887830	0.1974153326215447	0.6693340976838412
0.0298854843184856	0.8340073996245778	0.3248953608332189
0.5298854843184858	0.3340073996245854	0.3248953608332189
0.5571804560251611	0.3123130103186929	0.5633534149854514

0.0571804560251609 0.8123130103186927 0.5633534149854514 0.3678607293832150 0.9522997565261115 0.6850439701993829 0.8678607293832221 0.4522997565261190 0.6850439701993829 0.9669944187367120 0.2175152471779577 0.5831012030206288 0.4579663335343470 0.9301089934475968 0.3305194108036675 0.9579663335343466 0.4301089934475968 0.3305194108036675 0.4669944187367122 0.7175152471779571 0.5831012030206288 0.2200544475411177 0.5582252778034510 0.4596151366245448 0.2140981051366947 0.0915099624226597 0.4221692712573185 0.7140981051366947 0.5915099624226525 0.4221692712573185 0.7200544475411172 0.0582252778034505 0.4596151366245448 0.7440892690756475 0.5736280578465590 0.6649820285570739 0.1813980352297797 0.8248176307504439 0.4413164522700388 0.6813980352297873 0.3248176307504439 0.4413164522700388 0.2440892690756476 0.0736280578465660 0.6649820285570739 0.4636250656510157 0.1824835023140427 0.5482354987665649 0.9673305840053595 0.9709875260250403 0.3525984050069902 0.4673305840053598 0.4709875260250473 0.3525984050069902 0.9636250656510159 0.6824835023140351 0.5482354987665649 0.2194153827914988 0.8461143241612678 0.6548512892962950 0.2323675336005972 0.3025238522875466 0.6735812777467310 0.7323675336005970 0.8025238522875389 0.6735812777467310 0.7194153827914986 0.3461143241612740 0.6548512892962950 0.6775052995244223 0.8258443854030988 0.4425157733845603 0.2524555817306386 0.5763144788864760 0.6673287432315885 0.7524555817306388 0.0763144788864832 0.6673287432315885 0.1775052995244156 0.3258443854030984 0.4425157733845603 0.9617236523507021 0.1995842117204985 0.3398512165075388 0.4644732185201267 0.9511647242863241 0.5655275274162157 0.9667210523741747 0.6996756450733584 0.3402700380548659 0.4658011453626771 0.4475628714937979 0.5668317735183414 0.9658011453626771 0.9475628714937983 0.5668317735183414 0.4617236523507021 0.6995842117204989 0.3398512165075388 0.9644732185201268 0.4511647242863314 0.5655275274162157 0.4667210523741745 0.1996756450733586 0.3402700380548659

Perfect *h*-In₂O₃(012) surface

O In

0.4593731324262444 0.3884403569358105 0.6326960453419596 0.4862100846927808 0.2320429778250022 0.4540384255147979 0.2368767525075244 0.4479611470942720 0.6959038670739194 0.3853899153072200 0.4820429778250020 0.4540384255147979 0.1622268675737564 0.4137996430641942 0.3673039546580407 0.3847232474924765 0.3542788529057256 0.3040961329260812 0.1347232474924765 0.1979611470942721 0.6959038670739194 0.1353899153072200 0.0701970221750027 0.5459615744852027 0.4122268675737564 0.1384403569358104 0.6326960453419596 0.9868767525075239 0.1042788529057255 0.3040961329260812 0.7362100846927813 0.3201970221750027 0.5459615744852027 0.7093731324262442 0.1637996430641943 0.3673039546580407 0.9593731324262442 0.3884403569358105 0.6326960453419596 0.9862100846927813 0.2320429778250022 0.4540384255147979 0.7368767525075239 0.4479611470942720 0.6959038670739194 0.8853899153072196 0.4820429778250020 0.4540384255147979 0.6622268675737566 0.4137996430641942 0.3673039546580407 0.8847232474924769 0.3542788529057256 0.3040961329260812 0.6347232474924769 0.1979611470942721 0.6959038670739194 0.6353899153072196 0.0701970221750027 0.5459615744852027 0.9122268675737566 0.1384403569358104 0.6326960453419596 0.4868767525075243 0.6042788529057255 0.3040961329260812 0.2362100846927808 0.8201970221750028 0.5459615744852027 0.2093731324262444 0.6637996430641946 0.3673039546580407 0.4593731324262444 0.8884403569358101 0.6326960453419596 0.4862100846927808 0.7320429778250019 0.4540384255147979 0.2368767525075244 0.9479611470942721 0.6959038670739194 0.3853899153072200 0.9820429778250019 0.4540384255147979 0.1622268675737564 0.9137996430641946 0.3673039546580407 0.3847232474924765 0.8542788529057255 0.3040961329260812 0.1347232474924765 0.6979611470942721 0.6959038670739194 0.1353899153072200 0.5701970221750028 0.5459615744852027 0.4122268675737564 0.6384403569358101 0.6326960453419596 0.9868767525075239 0.6042788529057255 0.3040961329260812 0.7362100846927813 0.8201970221750028 0.5459615744852027 0.7093731324262442 0.6637996430641946 0.3673039546580407 0.9593731324262442 0.8884403569358101 0.6326960453419596 0.9862100846927813 0.7320429778250019 0.4540384255147979 0.7368767525075239 0.9479611470942721 0.6959038670739194 0.8853899153072196 0.9820429778250019 0.4540384255147979 0.6622268675737566 0.9137996430641946 0.3673039546580407 0.8847232474924769 0.8542788529057255 0.3040961329260812 0.6347232474924769 0.6979611470942721 0.6959038670739194 0.6353899153072196 0.5701970221750028 0.5459615744852027 0.9122268675737566 0.6384403569358101 0.6326960453419596 0.0498233563255517 0.2737866710379679 0.3271439600989097 0.3126651656019588 0.0008526936310043 0.5740191479030473 0.0626651656019588 0.0513873063689933 0.4259808520969530

0.2998233563255520 0.2784533289620297 0.6728560399010901 0.3089348343980420 0.3013873063689935 0.4259808520969530 0.0717766436744490 0.0284533289620298 0.6728560399010899 0.3217766436744488 0.0237866710379678 0.3271439600989097 0.0589348343980420 0.2508526936310042 0.5740191479030473 0.5498233563255519 0.2737866710379679 0.3271439600989097 0.8126651656019586 0.0008526936310043 0.5740191479030473 0.5626651656019586 0.0513873063689933 0.4259808520969530 0.7998233563255519 0.2784533289620297 0.6728560399010901 0.8089348343980423 0.3013873063689935 0.4259808520969530 0.5717766436744489 0.0284533289620298 0.6728560399010899 0.8217766436744489 0.0237866710379678 0.3271439600989097 0.5589348343980423 0.2508526936310042 0.5740191479030473 0.0498233563255517 0.7737866710379676 0.3271439600989097 0.3126651656019588 0.5008526936310042 0.5740191479030473 0.0626651656019588 0.5513873063689934 0.4259808520969530 0.2998233563255520 0.7784533289620300 0.6728560399010901 0.3089348343980420 0.8013873063689934 0.4259808520969530 0.0717766436744490 0.5284533289620300 0.6728560399010899 0.3217766436744488 0.5237866710379676 0.3271439600989097 0.0589348343980420 0.7508526936310043 0.5740191479030473 0.5498233563255519 0.7737866710379676 0.3271439600989097 0.8126651656019586 0.5008526936310042 0.5740191479030473 0.5626651656019586 0.5513873063689934 0.4259808520969530 0.7998233563255519 0.7784533289620300 0.6728560399010899 0.8089348343980423 0.8013873063689934 0.4259808520969530 0.5717766436744489 0.5284533289620300 0.6728560399010901 0.8217766436744489 0.5237866710379676 0.3271439600989097 0.5589348343980423 0.7508526936310043 0.5740191479030473

Perfect *h*-In₂O₃(104) surface

O In

1.00000000000000 0.0000000000000 0.0000000000000 21.6168003081999984 O In 48 32 Direct 0.1283164170000006 0.3258005380000029 0.5938591959999968 0.5948254469999981 0.0745844989999966 0.7318537829999983 0.9653918149999967 0.0844046919999997 0.2663239540000006 0.3172960280000012 0.0448215119999986 0.3652836979999989 0.7938935760000021 0.2980467980000014 0.4976985449999987 0.1767812969999980 0.3134430349999988 0.3167347910000018 0.6589541439999991 0.0765332579999978 0.4570353029999978 0.2663018699999995 0.0431170129999998 0.6379617449999984 0.7701285480000024 0.2991822660000025 0.7701174019999968

0.4606798590000025 0.3233882780000030 0.4030193689999990 0.9384331700000033 0.0745184499999993 0.5392086510000027 0.4109536710000015 0.3338520819999999 0.6802986860000004 0.5014763470000005 0.2254766229999987 0.2681212430000031 0.9680870769999999 0.4740811289999982 0.4061761199999978 0.1309160890000030 0.2155440900000016 0.7336639760000025 0.6854608060000018 0.4662223159999996 0.3197381199999967 0.1581590469999981 0.2254967539999981 0.4607896799999978 0.6358587149999977 0.4765140120000027 0.5969448090000000 0.326170802000000 0.0009098129999998 0.2298903020000012 0.8301106689999997 0.2568841579999983 0.3620341720000013 0.437652946000000 0.2235627769999979 0.5429322119999966 0.9195543530000023 0.4865541759999985 0.6832761169999984 0.3026185040000016 0.0019909700000014 0.5022993680000027 0.7789615989999987 0.2550958400000027 0.6347227689999997 0.1283164620000008 0.8258005380000029 0.5938587189999964 0.5948265789999994 0.5745854379999997 0.7318541409999995 0.9653923509999984 0.5844044090000011 0.2663238940000028 0.3172959090000020 0.5448212619999993 0.3652837870000027 0.7938938140000005 0.7980461719999994 0.4976982470000024 0.1767816249999967 0.8134424690000017 0.3167348500000031 0.6589540840000012 0.5765332579999978 0.4570353029999978 0.2663016019999986 0.5431171660000018 0.6379619240000025 0.7701286670000016 0.7991834879999971 0.7701178189999993 0.4606798590000025 0.8233881589999967 0.4030190710000028 0.9384332899999990 0.5745186810000007 0.5392084719999986 0.4109536109999965 0.8338512779999974 0.6802981499999987 0.5014771219999972 0.7254761459999983 0.2681213919999976 0.9680871959999990 0.9740812779999999 0.4061760599999999 0.1309168339999971 0.7155441640000006 0.7336636189999979 0.6854609849999989 0.9662225249999992 0.3197379710000021 0.1581589580000013 0.7254963520000004 0.4607895019999972 0.6358589530000032 0.9765135649999976 0.5969444509999988 0.3261720240000017 0.5009091499999982 0.2298899740000024 0.8301107289999976 0.7568840380000026 0.3620340530000021 0.4376533330000001 0.7235621809999984 0.5429317950000012 0.9195550080000032 0.9865532520000002 0.6832755800000001 0.3026186530000032 0.5019910339999996 0.5022996659999990 0.7789615390000009 0.7550955410000029 0.6347224120000021 0.4338561300000023 0.3986861710000014 0.2981556650000030 0.9178737399999974 0.1522970649999991 0.4409464299999968 0.3964857460000033 0.400647610000000 0.5799881820000010 0.8597855570000021 0.1586339620000032 0.7205237749999966 0.7220935819999994 0.1469431670000034 0.2911994460000003 0.2129221109999975 0.4002518360000025 0.4241215879999984 0.6823042629999989 0.1512350889999965 0.5588049890000022 0.1407311560000011 0.3857647780000022 0.6899422999999985 0.1787492189999966 0.1476938129999965 0.5590384010000022

0.6624586579999985	0.4013288319999972	0.701829076000028
0.2363370659999973	0.141354904000035	0.2794872819999981
0.6999135610000025	0.3993158339999994	0.4200382530000013
0.3741849959999968	0.1531035450000005	0.7088085410000033
0.955641210000031	0.4142625929999966	0.3100867570000005
0.414255470000005	0.1486918479999986	0.4411550160000033
0.883533180000006	0.3996851440000029	0.5758941169999972
0.4338558019999965	0.898686707000031	0.2981555160000013
0.9178737399999974	0.6522967220000027	0.4409461919999984
0.3964861330000033	0.900647640000025	0.5799877640000020
0.8597872260000017	0.658631325000018	0.7205233569999976
0.7220924499999981	0.6469435099999998	0.2911992670000032
0.212922007000031	0.9002521629999976	0.4241211710000030
0.6823039650000027	0.6512343879999989	0.5588048099999980
0.1407313790000018	0.885764420000010	0.689942062000001
0.1787492189999966	0.6476929780000020	0.5590383409999973
0.6624566910000027	0.9013304710000014	0.701828063000007
0.236336708000032	0.641356170000017	0.2794876689999981
0.6999136210000003	0.8993163109999998	0.4200379549999980
0.3741835650000027	0.653104007000032	0.7088083619999992
0.9556410309999990	0.9142631890000033	0.3100865780000035
0.4142557679999967	0.6486916539999967	0.4411549570000020
0.8835330610000014	0.8996855620000019	0.5758933420000005

Defective $c-\ln_2O_3(111)$ surface with the O_{v7} site

O In

1.00000000000000 -7.2221499999999965 12.5091307398835685 0.0000000000000000 O In 47 32 Direct 0.1429500432523283 0.8140900786647434 0.3534411575922925 0.4799391767210576 0.4861547614454031 0.5485647020521298 0.7742000094242808 0.4930516378986645 0.5787873178993702 0.4271036188871337 0.8256491853354423 0.3518143267381963 0.2844557806981188 0.2749593636713045 0.5807359983178838 0.9317010964305754 0.5958253637329484 0.3635512158345074 0.4824047567230941 0.7460790679775692 0.5259838203820516 0.1608866158299641 0.0735062662513210 0.3239406427539460 0.1855729602579074 0.3308647379799463 0.3506032855531481 0.5173978566052475 0.9879584788182465 0.5431209050079046 0.5084483276164431 0.2781689570214322 0.5730342584889847 0.1761679327257623 0.6041721240617457 0.3576373270629349 0.7276337381875151 0.0092929107617366 0.6212474286440104 0.4052791636487931 0.3374890252294221 0.3621410871155179 0.2612718554743751 0.7501749387151923 0.5291770611973348 0.9303836660421386 0.0893014865329739 0.3228757022041063 0.6688863342001232 0.8510947769850369 0.3452308872408419 0.0100632537650049 0.5255654034477628 0.5436001708575945 0.7191500633214722 0.2262079595630988 0.5738160133624707 0.3976176974887399 0.5718729107283015 0.3582958665200117 0.9935382240361638 0.7230128128012654 0.5627860165336203 0.6633642816747715 0.0657890816531014 0.3600271818088774 0.2513523802023362 0.5127121993218093 0.5295724956149584 0.9127277109934425 0.8398741553752642 0.3332015333405491 0.1864021362512073 0.8504472199654040 0.6488434525394526 0.8551758393367450 0.1726347418061937 0.4587109532522980 0.5616880987240400 0.1737965270853457 0.4258027000284623 0.9051565210941225 0.8411707281712950 0.6419492310666669 0.0504288766462775 0.3932233960813689 0.4222939646350373 0.4004678535061026 0.0685949670269685 0.6371626098181780 0.8401687020170154 0.9319589288134661 0.4699739724357325 0.1715630957565348 0.5945789687425856 0.6714182739029082 0.1479655025717915 0.3376283184250243 0.6488288381940722 0.8111486499465592 0.6734380940169632 0.4564422548780243

0.8234321967384787 0.3836976050750030 0.4272820526200046

0.1603927113849286	0.0637789124183891	0.6429652512895699
0.6022718898058784	0.6600090670908267	0.4339992700822202
0.9304832252234769	0.3292630340743727	0.6378137967996786
0.0745181204736341	0.9240534334399774	0.4696879585357434
0.4080810907051423	0.5839024815692394	0.6676721224624318
0.6626749151864830	0.7996982755265847	0.6379257879718907
0.3224023488838211	0.1417492423090973	0.4548074131748755
0.6137680041564214	0.4383420403511252	0.4283165031386158
0.9436466843539213	0.0956472246316231	0.6394137375981728
0.3423004970031649	0.9484773016603560	0.4216370982245343
0.0844175620352094	0.1548340694645367	0.4677336095682565
0.4181551751237144	0.8264869104259487	0.6748663977318060
0.1125364058440181	0.6852475061518418	0.6052202105234188
0.5511552657116385	0.1497604590460780	0.5758241398335419
0.2284690566639429	0.4905439695904235	0.38844666668783422
0.7769001123121340	0.0131081608149713	0.3837731007669470
0.3144945393599885	0.4301328237165519	0.6114929386190728
0.8480481608290871	0.3971206788674545	0.5770193522517026
0.5068186718999050	0.7400450598294129	0.3849779741357491
0.9861971261580198	0.7612127655316169	0.4048559999069324
0.5697238533070559	0.8857412341853609	0.6144853871141285
0.6036221733985413	0.4476073145888756	0.5805459586017181
0.2615740082397354	0.7722517576335819	0.3874635557116513
0.2388895563674879	0.2244256346328647	0.3928241599972963
0.2195499675755472	0.9826623907624480	0.3893623914482229
0.7815968671599954	0.5126372927378102	0.4244221712862061
0.1087350800460444	0.1777203301563253	0.6100022457595510
0.5502247334573229	0.6545779020650642	0.5842470233113526
0.0178952068161500	0.2371798952473324	0.3922141324584040
0.4858496045552436	0.2669565807259711	0.4244929673884501
0.8246116406706588	0.9295252655179730	0.6133446612880529
0.3464304101799367	0.9044311514738536	0.6029477007792530
0.7617481369946131	0.7813047301726134	0.3954590857903652
0.7328634704140629	0.2150282506555220	0.4257574664585930
0.0730876566636378	0.8978364499728584	0.6101687322394144
0.0950097550883838	0.4428715469546712	0.6021745839128513
0.0121873234463284	0.5140246379179655	0.4000124722345765
1.0014147667139284	0.0010941179487611	0.3856491448488317
0.4871849807225752	0.4980876159428567	0.4021074061165917
0.5010967777256502	0.9874096256634286	0.3998060620018989
0.8326228059413109	0.6770876192451220	0.5989539765842856
0.3228223590768849	0.1534539768496343	0.5988687041451902
0.3306641159792668	0.6679368377071244	0.6133275345567598
0.8485391695494285	0.1663372455481913	0.6040284409788307

Defective *c*- $In_2O_3(110)$ surface with the O_{v4} site O In 1.00000000000000 0.00000000000010 0.0000000000000010 15.98739999999999992 O In 47 32 Direct 0.6084218486684768 0.1822501374974544 0.4374581600636654 0.1081909088695893 0.6833168846823289 0.4377185529532702 0.1106576976953376 0.9634146879957456 0.4561994035305076 0.6085810333659818 0.4660352298480476 0.4560545349246817 0.3255115139464317 0.5841392217340996 0.3494340908182055 0.8257780999900247 0.0824468657941126 0.3465540446668404 0.8252660413930910 0.5646640786214522 0.5350187649814300 0.3275780483165420 0.0621062665737263 0.5351625287468165 0.0975685404461004 0.9720786366038311 0.6643488001486142 0.6003744887172109 0.4679203299810920 0.6666118306328936 0.3294779198500688 0.8186139607375266 0.3494716370898528 0.8260055651799445 0.3179812038991357 0.3462635734253382 0.5986909512067462 0.6873169041431950 0.6824765842730047 0.1039450814799660 0.1860145908657360 0.6829212937896004 0.8348888502894938 0.3294954773232461 0.5383340306495578 0.3343971762313296 0.8204897518251761 0.5455331190733460 0.5655948420906810 0.6958489582853647 0.4554531368674156 0.0607207828655051 0.1953010290526456 0.4612781146573464 0.3880542108294686 0.0671336735287677 0.3207962354622166 0.8884856514524470 0.5663256490598569 0.3206151405901212 0.8741295067811767 0.0855465534390516 0.5576866999715618 0.3722129893657007 0.5892874037760342 0.5646691686325157 0.0605996785056713 0.4590926896698340 0.4416809326118019 0.5602935528585603 0.9578397071690122 0.4419553745781444 0.7980246971703485 0.2155191912326374 0.6876626109274925 0.3113374686049717 0.4335390670848682 0.6743085530325003 0.8104133476379979 0.9371783487207173 0.6791086065323088 0.0939469301058266 0.3193563617548422 0.3154591723304387 0.5935844779387309 0.8213586657340988 0.3122242170921703 0.6108511729495577 0.8383485151459170 0.5715580743798100 0.1061247537127750 0.3381216484182543 0.5742923038031541 0.3324237465157217 0.4284588115117405 0.4607792058782350 0.8337381813010803 0.9275550914994135 0.4582047405538859 0.0916755201186729 0.0845996612834145 0.3126075922756629

S36

0.5905647102403868	0.5837409289855865	0.3100332410851925
0.8306457293349502	0.7203007435400798	0.4364335357698990
0.3290379508243630	0.2201537835942656	0.4380428532728306
0.5963588341066449	0.0685768409063997	0.5845004974118636
0.0990597845674154	0.5704296155158161	0.5832273333483837
0.8696067743875694	0.6968955102394349	0.6687262383460127
0.3740378718294731	0.1951182180500799	0.6684915131053887
0.0301692513925431	0.8340333857123707	0.3244132726745108
0.5286876570540059	0.3343752728875667	0.3256265767850671
0.5572919771641303	0.3127769357850910	0.5635043141998451
0.0563822028045383	0.8123950783560873	0.5662322605142870
0.3665746230964321	0.9501808364236957	0.6854476423637809
0.8683623916709775	0.4524422105094001	0.6845857612870799
0.9670640065680789	0.2182249183582003	0.5831506543154001
0.4579836360632488	0.9309592715423400	0.3301014914334712
0.9578702415155277	0.4291170180874238	0.3309774414011731
0.4804681207961288	0.7141540050034131	0.5742747197973802
0.2200334973282307	0.5593468368716569	0.4634497472918726
0.2142034880863134	0.0912361619810308	0.4222022854855890
0.7172241592442051	0.5893695302454782	0.4189556205666923
0.7196187139667506	0.0587007080092946	0.4596462559197354
0.7435074200364727	0.5734364598522159	0.6647559154422144
0.1808845861948662	0.8238981505748116	0.4412243199139458
0.6802794541597738	0.3259271201895134	0.4414915108307393
0.2444527208573279	0.0753917807302442	0.6641517371243537
0.4649547924639719	0.1821066076766003	0.5479129477957951
0.9680083871296699	0.9712083272127673	0.3518033205505200
0.4655571058481910	0.4715548873634629	0.3537081330294106
0.9638536534957747	0.6810396000597861	0.5484348834214392
0.2140656920982316	0.8510100061889511	0.6548320331474078
0.2331937277765523	0.3016746410133453	0.6735877691155266
0.7314415781971224	0.8033419968532454	0.6740451670700868
0.7198881833984673	0.3470098614028804	0.6540277167291699
0.6815378049610752	0.8263189037862612	0.4387146311463428
0.2476471569455164	0.5780308206480522	0.6787123419116932
0.7528579786222522	0.0773736228882311	0.6679618293664942
0.1779695186168622	0.3260359323062630	0.4432421571094133
0.9611047790996570	0.1995300875710893	0.3406191828141084
0.4662520975858055	0.9493551690582969	0.5659449809045219
0.9680617161822493	0.6991462079798051	0.3392527112314100
0.4614928078132207	0.4478000720577365	0.5702166025322059
0.9637023644259253	0.9486658174524225	0.5659552524112311
0.4620562422036104	0.6991340378733545	0.3368046905568473
0.9663613812402784	0.4516205409387868	0.5657942526192891

Defective	h-In₂O₃(012)	surface	with	the	Ov6 site
-----------	----------	------	---------	------	-----	----------

	••	
O In		
1.000000000000000		
11.0386000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000
0.0000000000000000	7 11.68469999999999	94 0.0000000000000000
0.0000000000000000	0.0000000000000	10 16.3939999999999984
O In		
47 32		
Direct		
0.4873266408188704	0.1046917057208583	0.3035422918684430
0.2342643711547460	0.3203252330319687	0.5458712373885621
0.2093845877825430	0.1646135356885391	0.3671174875472549
0.4571949339156604	0.3858289232008560	0.6321415249647152
0.4865125082180083	0.2326769799805849	0.4536579517648177
0.2348696446952903	0.4475527503048012	0.6960222022427497
0.3844774792936445	0.4826189522689625	0.4537613435891603
0.1623897672835897	0.4143825794870095	0.3663501857913412
0.3846322198496959	0.3548757668532897	0.3034029855507142
0.1329075302042183	0.1986045979408707	0.6955940537004711
0.1360238428133414	0.0697919296486221	0.5459438557738616
0.4133087445489489	0.1371017654208055	0.6339833466245944
0.9869601342255281	0.1052333146945064	0.3041767765181090
0.7369889084190484	0.3256254321827692	0.5495522423047674
0.7094658882151538	0.1644281900158555	0.3676024416464309
0.9474292918177859	0.3902779253499554	0.6386611533354271
0.9853249604539106	0.2334937683761455	0.4546523404479492
0.8882284862476665	0.4813762099071405	0.4510788952093669
0.6624657530341468	0.4140829715501629	0.3679273182768187
0.8839337206014543	0.3543989440632013	0.3028850475469383
0.6349104324485555	0.2024661068874676	0.6975028539471743
0.6357596487301970	0.0726438125396713	0.5465803914786859
0.9141455600831709	0.1345298767273439	0.6304849321939510
0.4875309411319349	0.6049773051598611	0.3032524064020226
0.2365496429559348	0.8194427299263252	0.5458793618661589
0.2101509968354016	0.6647146872221595	0.3668379188878611
0.4601315932080874	0.8869843420259850	0.6333029602855629
0.4874339298043106	0.7319312051966566	0.4541920234520074
0.2371824868998298	0.9472272786676731	0.6962347027120229
0.3854378041607407	0.9824208966355903	0.4539010154852433
0.1620555236307105	0.9144774961063038	0.3670693079732819
0.3844897273061023	0.8548674311058196	0.3037296262368355
0.1337440333235720	0.6987246682569022	0.6956808807099630

0.1330715382963331	0.5683631874734700	0.5465576453762003
0.4138505974291750	0.6374377655531217	0.6333580538085101
0.9875941501959490	0.6057186376944872	0.3029444816658885
0.7366130103167235	0.8191321634648441	0.5462115856783845
0.7099831138207022	0.6636239015355219	0.3671542338570603
0.9591285131561652	0.8861318800860881	0.6329730652326491
0.9856905287074911	0.7313763580276620	0.4543316117786919
0.7369891797889488	0.9503738901295800	0.6958388159064888
0.8853611094175089	0.9820894277962748	0.4533765100376702
0.6620022425448856	0.9146385479350272	0.3671295803780875
0.8842154961084541	0.8548422739395547	0.3034464136228832
0.6404071706416629	0.6948832771855579	0.6971359523390133
0.6357479739025611	0.5677177252270833	0.5470926064168409
0.9084951933052718	0.6333023263131379	0.6359472378870222
0.0495295825912591	0.2747139736121327	0.3266359862661646
0.3132886316342071	-0.0001552414335185	0.5742302565476517
0.0629499264633266	0.0521774829643987	0.4258572817045577
0.2992655539995664	0.2777809499944856	0.6731617469070149
0.3087764516430660	0.3022675121608243	0.4257460745243148
0.0725587540306298	0.0270341228828004	0.6724605676097970
0.3219170785276616	0.0245943614355008	0.3265735953202325
0.0583122287390415	0.2509511287139565	0.5744495227679118
0.5495530194125127	0.2743924013155868	0.3263319921364589
0.8118250142716061	-0.0014300594475964	0.5729470893348855
0.5624528964278306	0.0522185344624085	0.4258585150877425
0.8034508621997539	0.2705118866010579	0.6732411426741913
0.8082963165219605	0.3017563694284608	0.4255022291823629
0.5709929407189696	0.0288846366928019	0.6739384733214216
0.8217860228701946	0.0244900021942519	0.3264744401145249
0.5583003544207018	0.2511979453419901	0.5737867191033594
0.0497363560460608	0.7751000680276657	0.3265245428706530
0.3124459024831166	0.5007482765569472	0.5743988413176239
0.0650143785343178	0.5528520990309684	0.4244940063397853
0.3004364732918110	0.7774284819716065	0.6729907748354884
0.3097304651328139	0.8021783823953361	0.4257549416088489
0.0710678983021447	0.5288732820942805	0.6746321543962294
0.3223384868453192	0.5243653800113136	0.3260328978751627
0.0595376854117313	0.7496604001417174	0.5739617371381505
0.5498392858145201	0.7745826337115408	0.3266243457888500
0.8144252645456549	0.5041858013743027	0.5671377037147511
0.5619565136365753	0.5521626625987153	0.4254595373499822
0.8014787292071348	0.7803981423084936	0.6742224099130556
0.8087114664249037	0.8020566062116364	0.4253043932915786
0.5726030122604038	0.5252779264996573	0.6772122258173162

0.8222793149374633 0.5244416668431918 0.3248806604983351 0.5595015809100456 0.7489215087970235 0.5752023369329387

Defective $h-In_2O_3(104)$ surface with the O_{v3} site

O In

•		
1.00000000000000		
8.0410003662000005	5 0.00000000000000	0.0000000000000000000000000000000000000
0.0000000000000000000000000000000000000	0 11.09430027009999	98 0.0000000000000000
0.0000000000000000000000000000000000000	0.0000000000000000	00 21.6168003081999984
O In		
47 32		
Direct		
0.1332705619999999	0.3290569480000016	0.5966854099999992
0.5914500359999977	0.0679100979999987	0.7348390220000027
0.9655579920000008	0.0847392749999969	0.2657148239999998
0.3201001879999978	0.0453787220000024	0.3651039599999990
0.7960218190000035	0.2997946440000021	0.4990788400000028
0.1770348550000023	0.3127663429999998	0.3178848330000008
0.6607795359999997	0.0762775390000030	0.4580601159999986
0.2669119830000000	0.0488163380000017	0.6383628250000015
0.7603574990000013	0.3014116290000004	0.7717111709999998
0.4624277349999986	0.3234661520000017	0.4029273089999990
0.9404361249999980	0.0776278820000016	0.5409166219999975
0.4177922310000000	0.3349705039999975	0.6817356350000026
0.5011954309999993	0.2247633039999997	0.2671991590000005
0.9688162799999986	0.474126220000023	0.4055815339999995
0.1307202280000013	0.2206771079999967	0.7351596950000001
0.6861234899999999	0.4657346309999966	0.3192653360000008
0.1586847900000024	0.226796120000030	0.4613761009999990
0.6382377739999967	0.4801883399999980	0.6020764109999988
0.3218852580000018	0.9991661310000026	0.2296840850000024
0.8290343879999966	0.2559993859999992	0.3623923660000017
0.4404034909999979	0.2274323549999977	0.5432752370000031
0.9181609749999993	0.4864993690000006	0.6838291290000029
0.3024065199999981	0.0043621650000034	0.5016503929999985
0.7837733029999967	0.2532509859999976	0.6362294549999987
0.1285206530000025	0.8305659290000023	0.5927333830000023
0.9657285210000026	0.5838770869999976	0.2654054460000026
0.3200715779999967	0.5452396869999987	0.3651320040000030
0.793781400000003	0.7977874879999973	0.4957582059999979
0.1768657419999968	0.8126211760000004	0.3174061480000034
0.6604547499999995	0.5752366780000031	0.4583308400000021
0.2738605139999990	0.549786150000027	0.6406915780000020
0.6568734649999968	0.7249132990000007	0.7494442460000030
0.4614596959999986	0.8233596680000019	0.4021769759999998
0.9404602649999987	0.5763115290000016	0.5403591390000031
0.4037450849999971	0.8332408670000007	0.6763038639999976

0.5010982749999968	0.7245275969999980	0.2666787209999981
0.9683275220000027	0.9747025969999967	0.4055318529999994
0.1223768959999987	0.7309870119999999	0.7374446390000031
0.6855519409999999	0.9658477899999980	0.3185858730000035
0.1591297840000010	0.7265988589999992	0.4612844879999969
0.6389245989999992	0.9767519829999998	0.5971309540000007
0.3230192660000029	0.4985484179999986	0.2297940110000027
0.829662740000034	0.756041050000003	0.361310750000012
0.4413434860000010	0.7251068950000032	0.5415471199999971
0.9110687379999973	0.9776554110000006	0.6994264719999990
0.3031353350000003	0.5029309990000002	0.5022691490000000
0.7895767690000000	0.759932220000032	0.6323410870000004
0.4347513319999976	0.3980417849999967	0.2976438399999992
0.918930650000001	0.152593240000016	0.4410245119999985
0.396385193000004	0.4047500189999980	0.5806686880000029
0.8594774009999995	0.1578347089999994	0.7250903249999965
0.7225277419999969	0.1470739390000020	0.290380061000005
0.2144615799999983	0.4007345440000023	0.4233117400000026
0.683110476000031	0.1529578419999993	0.5593103169999978
0.151558340000011	0.3941571410000009	0.6932922599999998
0.1819743069999973	0.1523281480000023	0.5590582490000031
0.6702718140000030	0.3953856529999982	0.6978876590000027
0.2367387410000035	0.1410613660000024	0.2794286609999972
0.7017323370000028	0.3991560640000031	0.4198909699999973
0.3746628459999997	0.154803067000031	0.7116047140000035
0.9559481140000017	0.4135223330000031	0.3091555829999990
0.4161795079999990	0.1492450240000025	0.440851629000009
0.8905909059999999	0.4004875720000030	0.5763502120000012
0.433944881000022	0.8977161649999985	0.2970501180000014
0.9203114510000034	0.6522079109999979	0.4401783050000034
0.3970578610000004	0.9024657009999970	0.5780136589999998
0.8857811689999977	0.6655325290000036	0.7142537240000024
0.7223792079999996	0.6464552280000007	0.2899418470000015
0.2138512129999981	0.9004273409999968	0.4228174089999968
0.6843690279999990	0.6520729659999986	0.5578458909999995
0.1464839880000000	0.8946042660000018	0.6881673930000005
0.1831551940000011	0.6498917340000006	0.5602320429999992
0.6533179279999999	0.8961298469999974	0.6988923549999981
0.2366162089999975	0.640518069000023	0.2791832690000007
0.7001456619999971	0.8999575380000024	0.4182656999999992
0.3901391630000006	0.6563675399999980	0.719610095000002
0.9561283589999974	0.9137319920000024	0.3088375629999973
0.4157718120000027	0.6491084099999966	0.4409333469999979
0.8860195880000035	0.9001523849999984	0.5711473229999982

Fully reduced *c*-In₂O₃(111) surface

O In

1.00000000000000 -7.2221499999999965 12.5091307398835685 0.0000000000000000 O In 36 32 Direct 0.1470242711994905 0.8185281539406876 0.3486813037978116 0.4886565496720825 0.5008967281795162 0.5534862176497292 0.7761462849620978 0.4925089963112808 0.5762523671053197 0.4258540163022493 0.8251250972846701 0.3584299776551845 0.2607052035307168 0.2781391284826574 0.5731962004781203 0.9375543394428771 0.5979079469480266 0.3682967003142437 0.4893682738855136 0.7419766009325944 0.5284907695922078 0.1629387053090069 0.0803601454947894 0.3230406748292889 0.1813861409192498 0.3284990118029703 0.3484701209296074 0.4990914894789056 0.9877751042456392 0.5535295719721214 0.5075314875173068 0.2836047831899411 0.5762868627891143 0.1749120042691424 0.6007468970269174 0.3583879862190105 0.7217926401800806 -0.0174264556186268 0.5728730833007545 0.4021630414552949 0.3396681815840483 0.3681689526362721 0.2580300488399371 0.7473572070383000 0.5285753105116054 0.9194719174020758 0.0824803887266478 0.3231750480303203 0.6715166682581762 0.8529146036300146 0.3485374648304249 0.0122761409254426 0.5113816313634479 0.5534945308220790 0.7164811418486984 0.2239818074189686 0.5762766669126288 0.3992718454651177 0.5741254546105530 0.3583716798450139 1.0172564189972535 0.7392021168256450 0.5726936363282492 0.6603287112386118 0.0624726412898628 0.3682676746535308 0.2526116106308461 0.5105933944608281 0.5284988596894563 0.9175510566912137 0.8370128342304900 0.3232161254937978 0.8559566099204249 0.1763763592664607 0.4598226148642351 0.5602859884577962 0.1754151833084385 0.4281350337830346 0.0499471862848985 0.3902054926632355 0.4228736750970095 0.8507744006502018 0.9252008307861737 0.4651284965038659 0.8234775552639069 0.6794769850494540 0.4598183101992409 0.8247153620202137 0.3848874555253253 0.4281027646899622 0.6097885854264388 0.6597220205211403 0.4228451524074395 0.0747797830542464 0.9256903406297974 0.4651637301003071 0.3204430756147494 0.1441443999860022 0.4597442165029267 0.6151163186021190 0.4397881140689728 0.4281402208303461 0.3402432823130309 0.9500357093346260 0.4228966442592545

0.0746042436967832	0.1492744560001067	0.4650427001992968
0.1115367631112663	0.6699105347173014	0.6257894296894916
0.5464357428765125	0.1546445164446049	0.5790335017452222
0.2307238748179262	0.4889930568967711	0.3849465466263665
0.7731826072439383	0.0089814773176780	0.4038596864065703
0.3301731278706960	0.4418168701234380	0.6257433192748374
0.8454691987820379	0.3918063540279710	0.5790323905615208
0.5110073513215200	0.7417107931738094	0.3849468572438841
0.9909787080258937	0.7641987350173117	0.4040392316577961
0.5582081880492092	0.8883533632920236	0.6257457477256648
0.6082724027729260	0.4536597744239370	0.5790764129864683
0.2582800630170026	0.7692747041548053	0.3850221267889954
0.2358002004375198	0.2267404824794047	0.4035574509531994
0.2200450845952336	0.9882374891645909	0.3859304485001662
0.7844093618781384	0.5164474611194244	0.4259889123179931
0.0823913980973919	0.1813548972806216	0.6074553932304034
0.5996439862122925	0.6809194383510494	0.5758997663648995
0.0117116968307955	0.2317903844732666	0.3859150509896827
0.4835663404138361	0.2679774154007146	0.4260027026497401
0.8185737306512281	0.9010020933213775	0.6075041895494653
0.3190525646354251	0.9186971684922492	0.5759852353811061
0.7682062440450798	0.7799064635872215	0.3858933287222613
0.7321041673623919	0.2156154764486334	0.4259967492357507
0.0988883303271941	0.9175716959599972	0.6075428983104317
0.0812659592660109	0.4003554484198730	0.5759175487761165
0.0127142849292723	0.5131485825747353	0.4055431382909803
0.9999845567607353	-0.0000133611946813	0.3774825827439104
0.4868977316104042	0.4995649773343374	0.4055310407974622
0.5004182909736322	0.9873168468661501	0.4055743337410669
0.8478537004132161	0.6783698682492489	0.6092930254031376
0.3215873115222072	0.1695060426330434	0.6092494742882322
0.3333595554545499	0.6666319648251841	0.5954030752150693
0.8304850759683142	0.1520292380842998	0.6093070580093057

Fully reduced c-In₂O₃(110) surface

0 In

1.0000000000000

Direct

 $0.6099180865428737 \ \ 0.1814693987649224 \ \ 0.4343533994114800$

0.1099180865428735	0.6814693987649220	0.4343533994114800
0.1151486573149182	0.9643582394744072	0.4531460562212499
0.6151486573149165	0.4643582394744064	0.4531460562212499
0.3285531456179464	0.5828642527263890	0.3459254562333135
0.8285531456179456	0.0828642527263894	0.3459254562333135
0.8215839682638524	0.5650830156282652	0.5410855499417635
0.3215839682638540	0.0650830156282648	0.5410855499417635
0.3343640014991947	0.8174453474300259	0.3513122857704455
0.8343640014991918	0.3174453474300267	0.3513122857704455
0.8332453072256399	0.3311414618917654	0.5498876400991022
0.3332453072256409	0.8311414618917647	0.5498876400991022
0.5678247194386138	0.6985096832195850	0.4576968131038111
0.0678247194386131	0.1985096832195849	0.4576968131038111
0.3910119396473039	0.0643589473137824	0.3213583788708584
0.8910119396473052	0.5643589473137837	0.3213583788708584
0.8548049451538066	0.0956532036638685	0.5615325039009077
0.3548049451538086	0.5956532036638689	0.5615325039009077
0.0658629992689302	0.4582752942100279	0.4388051070263616
0.5658629992689309	0.9582752942100277	0.4388051070263616
0.1002357313443741	0.3193509627656804	0.3126935700145120
0.6002357313443754	0.8193509627656813	0.3126935700145120
0.6124207005493864	0.8432337452678126	0.5799853397713345
0.1124207005493872	0.3432337452678119	0.5799853397713345
0.3388929289531302	0.4285313041879100	0.4595009683633161
0.8388929289531276	0.9285313041879113	0.4595009683633161
0.0928545659635969	0.0841189211345583	0.3092248543497280
0.5928545659635969	0.5841189211345580	0.3092248543497280
0.8333376600189414	0.7174945408164034	0.4320970608889583
0.3333376600189403	0.2174945408164040	0.4320970608889583
0.5841455228739557	0.0665661865190679	0.5894696694693677
0.0841455228739564	0.5665661865190682	0.5894696694693677
0.0355033448423015	0.8346934296522245	0.3253088324297176
0.5355033448423019	0.3346934296522248	0.3253088324297176
0.5451282403316405	0.3053321370087468	0.5670628449408578
0.0451282403316423	0.8053321370087474	0.5670628449408578
0.9806127352517985	0.2172098953331751	0.5779300149123623
0.4640236228125053	0.9283649357674358	0.3256918361117506
0.9640236228125053	0.4283649357674376	0.3256918361117506
0.4806127352517992	0.7172098953331748	0.5779300149123623
0.2242657977935148	0.5596194941933030	0.4604421968997628
0.2198607519532195	0.0896983502716752	0.4156995617229581
0.7198607519532207	0.5896983502716751	0.4156995617229581
0.7242657977935162	0.0596194941933020	0.4604421968997628
0.6825025107722853	0.5718393446335800	0.6590030209233392

0.1835678258587592	0.8233544774523565	0.4413742446014151
0.6835678258587667	0.3233544774523572	0.4413742446014151
0.1825025107722868	0.0718393446335799	0.6590030209233392
0.4649260780742773	0.1765799108580136	0.5378990729340432
0.9682130264706170	0.9709553055902810	0.3486460626953858
0.4682130264706159	0.4709553055902824	0.3486460626953858
0.9649260780742763	0.6765799108580113	0.5378990729340432
0.2005409336801786	0.8263042416701241	0.6697390964137716
0.2500149002623693	0.3268048773388904	0.6869560076027854
0.7500149002623714	0.8268048773388897	0.6869560076027854
0.7005409336801794	0.3263042416701240	0.6697390964137716
0.6864243828371055	0.8264078771673510	0.4411199036305015
0.2424663038593333	0.5755608153389195	0.6849229487104956
0.7424663038593331	0.0755608153389206	0.6849229487104956
0.1864243828371064	0.3264078771673491	0.4411199036305015
0.9652004405177891	0.1990850446607704	0.3372811500507324
0.4635684082820640	0.9501034742724892	0.5552861642753537
0.9718641155124108	0.6991197824446802	0.3322796471505577
0.4784317012113599	0.4551321013315194	0.5629127405577142
0.9784317012113584	0.9551321013315185	0.5629127405577142
0.4652004405177894	0.6990850446607716	0.3372811500507324
0.9635684082820635	0.4501034742724874	0.5552861642753537
0.4718641155124110	0.1991197824446808	0.3322796471505577

Fully reduced *h*-In₂O₃(012) surface

O In

1.00000000000000 0.00000000000007 11.684699999999994 0.000000000000000 0.00000000000010 0.0000000000000010 16.3939999999999984 O In 40 32 Direct 0.4893092590946070 0.1043235986129083 0.3017427657549470 0.2296991785164958 0.3283170232483621 0.5494200301412906 0.2099003380249634 0.1639419883430852 0.3668096408663888 0.4514631536622241 0.3852064368139475 0.6313455211483351 0.4823579874695001 0.2307931547240781 0.4504155494789314 0.3892420125305007 0.4807931547240783 0.4504155494789314 0.1616996619750374 0.4139419883430853 0.3668096408663888 0.3822907409053938 0.3543235986129085 0.3017427657549470 0.1419008214835050 0.0783170232483619 0.5494200301412906 0.4201368463377767 0.1352064368139475 0.6313455211483351 0.9893092590946068 0.1043235986129083 0.3017427657549470

0.7296991785164957	0.3283170232483621	0.5494200301412906
0.7099003380249634	0.1639419883430852	0.3668096408663888
0.9514631536622243	0.3852064368139475	0.6313455211483351
0.9823579874694999	0.2307931547240781	0.4504155494789314
0.8892420125305009	0.4807931547240783	0.4504155494789314
0.6616996619750374	0.4139419883430853	0.3668096408663888
0.8822907409053941	0.3543235986129085	0.3017427657549470
0.6419008214835051	0.0783170232483619	0.5494200301412906
0.9201368463377765	0.1352064368139475	0.6313455211483351
0.4893092590946070	0.6043235986129082	0.3017427657549470
0.2296991785164958	0.8283170232483623	0.5494200301412906
0.2099003380249634	0.6639419883430852	0.3668096408663888
0.4514631536622241	0.8852064368139474	0.6313455211483351
0.4823579874695001	0.7307931547240785	0.4504155494789314
0.3892420125305007	0.9807931547240785	0.4504155494789314
0.1616996619750374	0.9139419883430852	0.3668096408663888
0.3822907409053938	0.8543235986129082	0.3017427657549470
0.1419008214835050	0.5783170232483623	0.5494200301412906
0.4201368463377767	0.6352064368139474	0.6313455211483351
0.9893092590946068	0.6043235986129082	0.3017427657549470
0.7296991785164957	0.8283170232483623	0.5494200301412906
0.7099003380249634	0.6639419883430852	0.3668096408663888
0.9514631536622243	0.8852064368139474	0.6313455211483351
0.9823579874694999	0.7307931547240785	0.4504155494789314
0.8892420125305009	0.9807931547240785	0.4504155494789314
0.6616996619750374	0.9139419883430852	0.3668096408663888
0.8822907409053941	0.8543235986129082	0.3017427657549470
0.6419008214835051	0.5783170232483623	0.5494200301412906
0.9201368463377765	0.6352064368139474	0.6313455211483351
0.0480338438857624	0.2748099143698680	0.3236306004801970
0.3180682146959202	0.0023081668295105	0.5681049207372389
0.0663345361750255	0.0530900618247081	0.4253240180030588
0.3015133954788238	0.2704496552335330	0.6873069533896103
0.3052654638249679	0.3030900618247082	0.4253240180030588
0.0700866045211702	0.0204496552335328	0.6873069533896103
0.3235661561142315	0.0248099143698680	0.3236306004801970
0.0535317853040735	0.2523081668295105	0.5681049207372389
0.5480338438857626	0.2748099143698680	0.3236306004801970
0.8180682146959201	0.0023081668295105	0.5681049207372389
0.5663345361750256	0.0530900618247081	0.4253240180030588
0.8015133954788238	0.2704496552335330	0.6873069533896103
0.8052654638249681	0.3030900618247082	0.4253240180030588
0.5700866045211699	0.0204496552335328	0.6873069533896103
0.8235661561142311	0.0248099143698680	0.3236306004801970

0.5535317853040808	0.2523081668295105	0.5681049207372389
0.0480338438857624	0.7748099143698676	0.3236306004801970
0.3180682146959202	0.5023081668295107	0.5681049207372389
0.0663345361750255	0.5530900618247080	0.4253240180030588
0.3015133954788238	0.7704496552335323	0.6873069533896103
0.3052654638249679	0.8030900618247080	0.4253240180030588
0.0700866045211702	0.5204496552335323	0.6873069533896103
0.3235661561142315	0.5248099143698676	0.3236306004801970
0.0535317853040735	0.7523081668295107	0.5681049207372389
0.5480338438857626	0.7748099143698676	0.3236306004801970
0.8180682146959201	0.5023081668295107	0.5681049207372389
0.5663345361750256	0.5530900618247080	0.4253240180030588
0.8015133954788238	0.7704496552335323	0.6873069533896103
0.8052654638249752	0.8030900618247080	0.4253240180030588
0.5700866045211699	0.5204496552335323	0.6873069533896103
0.8235661561142311	0.5248099143698676	0.3236306004801970
0.5535317853040808	0.7523081668295107	0.5681049207372389

Fully reduced *h*-In₂O₃(104) surface

O In

8.0410003662000005 0.00000000000000 0.0000000000000
0.0000000000000 11.0943002700999998 0.00000000000000000
0.0000000000000 0.0000000000000 21.6168003081999984
O In
42 32
Direct
0.1275605459999980 0.3217763840000032 0.5976085879999999
0.9650851560000007 0.0848582070000035 0.26548381799999999
0.3185827129999979 0.0453016669999968 0.3647954870000021
0.7961190050000013 0.3011125600000000 0.4992916969999968
0.1761960070000015 0.3131985759999978 0.3175287239999989
0.6586667420000012 0.0776111839999984 0.4575956669999997
0.263036049000001 0.0441511790000035 0.6400397880000028
0.4616472259999966 0.3237567050000010 0.4025285729999979
0.9362949499999971 0.0773702420000006 0.5406868919999965
0.4165956049999977 0.3244813749999977 0.6800421570000026
0.5009432969999992 0.2250418989999972 0.2665919559999992
0.9670856070000013 0.4748811099999983 0.4054695190000004
0.6851468289999971 0.4662477279999990 0.3190871669999993
0.1574653240000004 0.2262672049999992 0.4612156660000011
0.6275898410000025 0.4806960960000026 0.5961547030000034
0.3227719530000002 0.9991201059999995 0.2293204030000027
0.8285444639999966 0.2567172729999996 0.3624999330000023

0.4359206729999983	0.2249382310000030	0.5412286520000009
0.9105969209999998	0.479707204000003	0.6796532190000022
0.2981231620000031	0.0010460490000028	0.5018328519999997
0.7668261070000000	0.257837363000002	0.6370580339999989
0.1275413179999987	0.8217878170000006	0.5976353229999987
0.965083970000020	0.5848533129999964	0.2654820309999977
0.3185691919999982	0.5452913840000022	0.3647968100000014
0.7960964700000019	0.8011130539999982	0.4992984029999974
0.1762039970000018	0.8131940629999974	0.3175336649999991
0.6586561860000018	0.5776124519999968	0.4575902400000018
0.2630790119999986	0.5441406280000010	0.6400327300000015
0.4616470779999986	0.823752450000006	0.4025323230000026
0.9363063950000026	0.5773953579999969	0.5406681420000012
0.4165767470000006	0.8245140619999987	0.6801079359999989
0.5009554530000031	0.7250278229999978	0.2665936320000029
0.9670802099999989	0.974882700000020	0.4054715480000013
0.6851537069999978	0.9662457940000024	0.3190879610000010
0.157471061000025	0.7262700420000030	0.4612246659999997
0.6275794040000022	0.9806972570000028	0.5961671439999989
0.3227788020000020	0.4991051490000018	0.2293181969999978
0.8285528250000027	0.7567075380000006	0.3625007930000024
0.4359026159999999	0.7249518340000023	0.5412476220000002
0.9104789719999999	0.9797024329999999	0.6797679680000002
0.2981370680000026	0.5010495379999966	0.5018223519999978
0.7668076639999981	0.757846260000009	0.6370652250000006
0.4341726359999996	0.3982511029999998	0.2972469099999984
0.9184832649999990	0.1528215279999969	0.4410864529999969
0.3864299179999975	0.3997274789999992	0.5795496670000020
0.8861314580000013	0.1648424609999992	0.7189936509999981
0.7219002920000008	0.1474153710000010	0.2908266110000000
0.2123563880000034	0.3996435809999994	0.4222047009999983
0.6802884980000030	0.1551523649999993	0.5576166310000019
0.1479428729999981	0.3826606169999991	0.6955487609999977
0.1809614869999976	0.1466878530000031	0.5596838789999978
0.6536156250000005	0.4142179239999990	0.692012409000002
0.2362478359999969	0.1409084220000025	0.2790189090000013
0.7004016440000029	0.4001969529999982	0.4200535869999982
0.396089680000029	0.1370915930000010	0.7178233079999998
0.9545878599999966	0.4141547859999974	0.3090725229999975
0.4131466150000023	0.1490533320000011	0.4406259570000017
0.8888144009999976	0.4017519829999969	0.5771644220000027
0.4341837260000005	0.8982456869999993	0.2972441969999977
0.9184932280000027	0.6528230759999971	0.4410902030000017
0.3863873700000013	0.8997353869999998	0.5795604750000010

0.8862037450000031	0.6647317329999964	0.7189627690000009
0.7219160659999986	0.6474041959999965	0.290829920000002
0.2123580040000022	0.899649340000034	0.4222091569999975
0.680268810000012	0.6551279410000035	0.5576106310000029
0.1479235549999984	0.8827192859999968	0.6955644669999970
0.1809742069999984	0.6466703489999972	0.5596926139999994
0.6535793919999975	0.9141920929999969	0.6919952470000013
0.2362686499999995	0.6408610359999969	0.279009160000011
0.7003992719999985	0.9001934719999980	0.4200558810000032
0.3959645859999981	0.6370459689999990	0.717863676000003
0.954588512000008	0.9141549579999975	0.3090742219999996
0.4131319680000018	0.6490532239999993	0.4406236629999967
0.8887820819999988	0.901735780000028	0.5771672019999983