Supplementary Information

Diverse electronic properties of 2D layered Se-containing materials

composed of quasi-1D atomic chains

Yawen Li^a, Yuanhui Sun^a, Guangren Na^a, Wissam A. Saidi^{b,*} and Lijun Zhang^{a,*}

^aKey Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
^bDepartment of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA

E-mail: alsaidi@pitt.edu, lijun_zhang@jlu.edu.cn

Figure S1. The HSE functional calculated band structure of bulk α -Se and Sb₂Se₃. Both bulk α -Se and Sb₂Se₃ are indirect band gap semiconductors. The spin orbital coupling is considered.

Figure S2. The HSE functional calculated band structures of α -Se from n=1 to n=6.

Figure S3. The HSE functional calculated band structures of Sb_2Se_3 from n=1 to n=6.

Figure S4. PBE band structure of bulk α -Se and Sb₂Se₃.

Figure S5. PBE band structures of α -Se from n=1 to n=6.

Figure S6. PBE band structures of Sb_2Se_3 from n=1 to n=6.

Figure S7. PBE band gaps and band edge evolution with layer number increases of few layers α -Se (a) and Sb₂Se₃ (b).

Figure S8. The crystal orbital Hamiltonian population (COHP) diagram of the Se-Se bonds in monolayer Se (blue line) and in Sb₂Se₃ (red line). The COHP adopts positive values to represent bonding interactions and negative values to identify antibonding interactions.

Figure S9 The crystal orbital Hamiltonian population (COHP) diagram of the Se-Se bonds in bilayer α -Se (orange line) and in Sb₂Se₃ (dark cyan line). The two Se atoms from each monolayer beside the interlayer region with the shortest Se-Se interlayer distance are selected for the bilayer COHP analysis.

Figure S10. The projected HSE band structure of (a) monolayer and (b) bilayer α -Se. The green, blue and red dot represent Se-px, py and pz orbits, respectively.

Figure S11 The planar-averaged squared wave function for top VB and top CB of monolayer and bilayer Sb_2Se_3 . Γ and M represent the position in reciprocal space of the CBM of monolayer and bilayer Sb_2Se_3 , Y and F represent the position in reciprocal space of the VBM of monolayer and bilayer Sb_2Se_3 .

Figure S12. The visualized wavefunction of two chains structures of α -Se and Sb₂Se₃.