Improved SERS Activity of non-stoichiometric Copper Sulfide Nanostructures Related to Charge-Transfer Resonance

Menglei Chen^{a, b, #}, Ke Li^{c, d, #}, Yuanyuan Luo^{c, d, *}, Jianping Shi^{a, e,*}, Chaocang Weng ^a, Lei Gao^c, and Guotao Duan^{b,*}

^{*a*} College of Physics and Electronic Technology, Anhui Normal University, Wuhu, 241000, Anhui, P.R. China.

^b Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China

^c Key Lab of Materials Physics, Anhui Key lab of Nanomaterials and nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, Anhui, P.R. China.

^d University of Science and Technology of China, Hefei, 230026, PR China

^e Anhui Province Key Laboratory of Photo-electronic Materials Science and Technology, Wuhu, 241000, China.

These authors contribute equally to this work.

*Corresponding authors. E-mail: yyluo@issp.ac.cn; jps51062@ahnu.edu.cn; duangt@hust.edu.cn

Supplementary Material

The EF value can be calculated by the following formula: $EF = (I_{SERS} / N_{SERS}) / (I_{normal} / N_{normal})$. Where I_{SERS} is the intensity of the Raman spectrum of R6G molecules adsorbed on the substrate. N_{SERS} is the total number of R6G molecules adsorbed on the substrate surface under the laser spot. I_{normal} is the intensity of the normal Raman spectrum of R6G powder. N_{normal} is the number of molecules of the R6G powder under the laser spot. As shown in Figure S3, taking the 613 cm⁻¹ peak as an example, the measured values of I_{normal} and I_{SERS} are 489 and 519 counts. It is known that the density of R6G powder is about 0.99 g/cm³, the radius of the confocal laser beam is 0.5 µm, the penetration depth of the confocal laser beam is about 2 µm, and the volume of R6G dropped on the substrate is 10 µL. Here, we assume that the R6G moleculars are uniformly distributed on the substrate after drying. $N_{SERS} = N_A \times 0.25\pi \ \mu m^2 \times (10 \ \mu L \times 10^{-7} \ M) / (25 \ mm^2) = 1.89 \times 10^4$ $N_{normal} = N_A \times (0.99 \ g/cm^3 \times 0.25 \ \mu m^2 \times 2 \ \mu m)/479 \ g/mol = 6.22 \times 10^8$

It can be estimated that the values of N_{SERS} and N_{normal} are about 1.89×10^4 and 6.22×10^8 . Thus, the EF value of 613 cm⁻¹ was calculated to be 3.5×10^4 .

	CuS	Cu _{7.2} S ₄	CuSO ₄
(1)	100 %	0 %	0 %
(2)	100 %	0 %	0 %
(3)	43 %	24 %	33 %
(4)	7 %	40 %	53 %
(5)	0 %	0 %	100 %

 $\begin{array}{c}
120 \\
(\%) \\
\% \\
H00 \\
100 \\
0 \\
50 \\
150 \\
250 \\
350 \\
450 \\
550 \\
650 \\
\hline \text{Temperature (°C)}
\end{array}$

Figure S1. The thermogravimetric curve of CuS.

Figure S2. SERS spectra of 10⁻⁷ M R6G adsorbed on annealed sample at 300 °C and Raman spectrum of R6G powder.

Figure S3. UV-Vis absorption spectra of (a) the as-synthesized samples and annealed samples at (b) 200 °C, (c) 250 °C, and (d) 300 °C.

Figure S4. The top and side images of the structures: (a)(b) CuS; (c)(d) $Cu_{2-x}S$ and (e)(f) $Cu_{7-2}S_4$.