Supporting information of "Thermal transport in amorphous

small organic materials: A mechanistic study"

1. Molecular structure

Fig. S1. Molecular formula of mCP (left) and TPD (right).

Fig. S2. Morphology of amorphous mCP (left) and TPD (right).

2. Force Field

In this work, we apply the OPLS force field to describe the interatomic interactions. In OPLS force field, there are four terms to describe the full force field, i.e., bond, angle, dihedral and improper. For bond, angle and improper, the potential energy is described by the harmonic potential with the following expression:

$$E^{i}(\xi) = \frac{1}{2}k^{i}(\xi - \xi_{0})^{2}$$

Where k^i is force constant corresponding to bond/angle/improper, and ξ_0 is the equilibrium bond length or angle. The dihedral potential is described by the Ryckaert-Bellemans function:

$$E^{d}(\varphi) = \sum_{n=0}^{N} C_{n} [cos^{[iii]}(\varphi - 180^{\circ})]^{n}$$

Where *n* corresponds to *n* minimum points from 0 to 360 degrees, C_n is the dihedral constant.

We adopted the force field parameters of rigid fragments from literatures while the soft bonds such as dihedral, angle and improper connecting two rigid fragments are parametrized based on quantum chemistry calculations.

TPD							
Bond length	Force constant (kcal/mol Å ²)				Equilibrium (Å)		
C-C	392.4				1.40		
C-CC	392.4				1.40		
C-CN		392.4			1.40		
С-СН		392.4			1.50		
CC-CC		392.4			1.50		
CN-N		392.4			1.42		
С-Н		307.1			1.09		
СН-Н		307.1			1.09		
Bond angle	Force	constant (kc	al/mol rad ²))	Equilibrium (deg)		
C-C-C		527.0			120.	0	
C-CN-C		527.0			118.0		
CN-C-C		527.0			120.0		
C-CN-N		286.0			120.0		
CN-N-CN		400.0			120.0		
CC-C-C	527.0				121.0		
C-CC-C	527.0				118.1		
CC-C-CN	527.0				121.0		
С-СС-СН	385.0				120.0		
С-С-Н	292.9				120.	0	
СС-С-Н	292.9				120.	0	
СМ-С-Н	292.9				120.	0	
СС-СН-Н	292.9				111.0		
Н-СН-Н	292.9			107.	0		
Improper angle	Force constant (kcal/mol)				Phase angle (deg)		
X-C-C-X	167.4				180.0		
X-C-CN-X	167.4				180.0		
X-C-CC-X	167.4				180.0		
N-CN-CN-CN	25.0				180.0		
CN-C-C-N	740.0				180.0		
СС-С-С-СН	515.0				180.0		
СС-С-С-С	477.0				180.0		
Dihedral angle		Ryckaert	-Bellemans o	constant (kca	al/mol)		
	C_0	C_1	<i>C</i> ₂	<i>C</i> ₃	C_4	<i>C</i> ₅	
C-CC-CC-C	8.9636	0.0313	-29.6793	-0.2072	19.9632	0.1656	
C-CN-N-CN	50.6415	1.5540	-28.6706	1.1613	-21.7435	-2.7452	
Van der waals		ε (eV)			σ (nn	1)	

Table S1 OPLS Parameters Used in the Simulations

С	0.293			0.355				
CC	0.293				0.355			
CN	0.293				0.355			
N	0.711				0.325			
Н		0.126			0.242			
		mCI	þ					
Bond length	Force	e constant (ko	cal/mol Å ²)			Equilibriur	n (Å)	
C-C		392.4				1.40		
C-CZ		322.2				1.40		
C-CP		392.4				1.40		
C-CN		392.4				1.40		
CZ-N		392.4			1.42			
CN-N		349.8				1.42		
С-Н		307.1				1.08		
Bond angle	Force	constant (kc	al/mol rad ²))		Equilibrium (deg)		
C-C-CZ		527.0				120.0		
C-CZ-C		527.0				120.0		
CZ-C-CZ	527.0			120.0				
C-CZ-N	480.0			120.0				
C-C-CN	527.0			120.0				
С-С-СР	527.0			120.0				
C-CN-CP	527.0			120.0				
C-CP-CN	527.0				120.0			
CP-CP-CN	527.0				106.8			
CP-CN-N	585.8				109.0			
CN-N-CN	585.8				108.4			
С-СР-СР	527.0				133.2			
C-CN-N	585.8			131.0				
CN-N-CZ	332.0			125.8				
С-С-Н	292.0			120.0				
Improper angle	For	ce constant (kcal/mol)			Phase angle	(deg)	
X-C-C-X		167.0				180.0		
X-C-CZ-X	167.0			180.0				
Х-С-СР-Х	167.0			180.0				
X-C-CN-X	167.0			180.0				
CN-CP-N-C	516.5			180.0				
N-CN-CN-CZ	235.0 180.0							
Dihedral angle		Ryckaert-	Bellemans of	constant	(kcal	/mol)		
	C_0	C_1	C_2	<i>C</i> ₃		C_4	<i>C</i> ₅	
CN-N-CZ-C	14.5527	0.6824	-14.7613	-3.657	7	-6.0691	4.0042	
Van der waals		ε (eV)				σ (nm))	
С		0.293				0.355		
CZ	0.293			0.355				

CN	0.293	0.355
СР	0.293	0.355
Ν	0.711	0.325
Н	0.126	0.242

To fit the parameters of soft "bonds", we first use the Gaussian 09 package¹ to perform a scan with different dihedral, angle or improper. The DFT energy calculation is done in the level of B3LYP/6-311(d,p). The energy at each angle is then obtained and illustrated by the curve "energy QM". After that, we use the Gromacs package to do the scan again by setting the parameters of corresponding "bonds" to be zero, which means that the energy of the corresponding "bond" is not considered. The obtained energy is demonstrated by the curve "energy MD dihedral=0". As a result, the energy difference between the two curves is regarded as the potential energy of the corresponding "bond".

TPD

Impropers

 $CC-C-C-C k_{ijk=477.0}$

theta0=0

N-CN-CN-CN $k_{ijk=25}$ theta0 = 0

theta0 = 0

CC-C-C-CH $k_{ijk} = 515.0$ theta0=0

Dihedrals

C-CC-CC-C $a_0 \sim a_{t-1} \approx 0.626 = 0.0212 = 2$

C-CN-N-CN

 $a_0 \sim a_5 = 50.6415$ 1.5540 -28.6706 1.1613 -21.7435 -2.4752

mCP

Angles

CN-N-CZ $k_{ij} = 332.0$ theta0 = 125.80

CN-CP-N-C $k_{ijk} = 516.50$ theta0 = 0

C-CN-CN-CZ $k_{ijk} = 235.00$ theta0 = 0

Figure S3. Quantum mechanics and molecular dynamics energy scan for the soft bonds.

3. EMD results

Figure S4. Thermal conductivities from the kinetic heat flux $\binom{\kappa_e}{p}$, the potential heat flux $\binom{\kappa_p}{p}$ and the total heat flux $\binom{\kappa_e}{p}$ versus the correlation time for TPD (a), mCP (b) with correlation time τ . κ_{e+p} , κ_{p} , κ_{e} and κ_{pk} represent the TC calculated based on the autocorrelation of the total heat flux (pink line), the Virial heat flux (green line), the convective heat flux (blue line), and based on the cross-correlation between convective and Virial heat flux (red line), respectively.

Table S2. The converged TCs based on the autocorrelation of the total heat flux $({}^{\mathcal{K}}e + p)$, the Virial heat flux $({}^{\mathcal{K}}p)$, the convective heat flux $({}^{\mathcal{K}}e)$, and based on the cross-correlation between convective and Virial heat flux $({}^{\mathcal{K}}pk)$ at 300 K, respectively

	κ_{e+p}	κ _e	κ _p	κ _{pk}
TPD	1.497	0.193	1.176	0.133
mCP	1.183	0.127	0.999	0.060

Table S3. Longitudinal (vp) and shear (vs) velocities of mCP and TPD under 0 and 3 GPa.

	mCP		TPD	
Pressure	0 GPa	3 GPa	0 GPa	3 GPa
v _p (km/s)	3.18	4.45	3.4	5.43
V _s (km/s)	1.77	1.94	1.75	2.11

Figure S5. Mode participation ratio under different pressures.

Figure S6. Convergence test of thermal conductivity calculations.

References:

1. Frisch, M.; Trucks, G.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G., Gaussian 09, revision D. 01. Gaussian, Inc., Wallingford CT: 2009.

2. Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E., GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. *Journal of chemical theory and computation* **2008**, *4* (3), 435-447.