Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

Supporting Information

Broad Range Variable-Temperature Solid State NMR Spectral and Relaxation Investigation of the Water State in Nafion 117

Ren-Hao Cheng^a, Honghao Cai^b, Yu-Ren Huang^c, Zhong Chen^d, Hsuan-Ying Chen^e, Shangwu Ding^a,*

- ^a Department of Chemistry and Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, 70 Lien-Hai Road, Kaohsiung, 80424, Taiwan R.O.C.
- ^b School of Science, Jimei University, Xiamen, China.
- ^c Department of Applied Science, ROC Naval Academy, 669 Academy Road, Kaohsiung, Taiwan, R.O.C.
- ^d Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China
- ^e Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan

In this supplementary information, the variable temperature 2H NMR spectra of fully hydrated pristine Nafion 117 and Nafion 117 samples substituted by lithium and sodium cations are presented. The narrow spectra (all smaller than 4 ppm) confirms that a significant portion of water remains unfrozen down to -60 $^{\circ}C$. Note that because of a much smaller gyromagnetic ratio of 2H than that of proton, its S/N is much smaller hence a much longer data acquisition time for each measurement point, that limited the measurement points from + 15 $^{\circ}C$ to -60 $^{\circ}C$, rather than + 20 $^{\circ}C$ to -70 $^{\circ}C$ used in ^{1}H experiments.

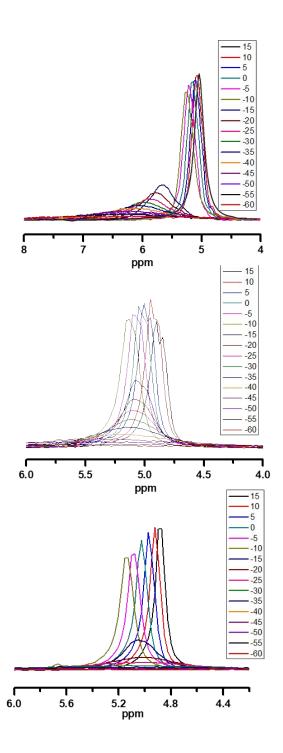


Figure S1 The broad variable temperature ${}^{2}H$ spectra of $D_{2}O$ in fully hydrated pristine Nafion samples and substituted with lithium and sodium, respectively.