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Details about the alchemical free energy calculation: 

The similar atom mapping technique is often used to improve the convergence behavior of alchemical free energy 

simulation. The method maps similar atoms in different inhibitors and sets the non-bonded parameters (i.e. atomic charges 

and vdW radius) in different ligands to be the same. To effectively and realistically represent the variation of force field 

parameters of ligands upon the alchemical mutation, in our transformation, we do not use this scheme. The whole ligand 

is included in the alchemical region and all non-bonded parameters are allowed to vary. As a result, no two atomic charges 

share the same value in different ligands. This setting introduces much larger fluctuations compared with maximum 

similarity mixing regimes63, 82 and thus has worse convergence behavior, but the true variation in Hamiltonians in mutating 

the ligand is represented more realistically.  

Equilibrium and nonequilibrium free energy simulation are performed along the alchemical pathway. As the difference 

between the full A state and the full B state is large, to increase the phase space overlap between neighboring states in 

equilibrium sampling and to reduce the dissipation in nonequilibrium pulling, we employ the staging regime or the 

stratification scheme. As the creation and annihilation of atoms at the end states in the vdW transformation results in vdW 

singularity,121-130 which hinders the convergence of the simulation, we employed the nonlinear separation-shifted softcore-

potential121, 124-126, 131 to avoid the problem. Further, in order to simplify the procedure of the transformation, the softcore 

scheme is applied to both the vdW transformation and the charge transformation and the two types of mutation are 

performed altogether. Also due to the use of the soft-core potential, the linear mixing rule can be used to combine the 

Hamiltonians of two ligands to determine the Hamiltonians of the intermediate states. Another technical note is that the 

net charges of all ligands considered in the current work are zeros and thus the alchemical mutation does not introduce 

new charges to the system. Therefore, there is no need to add corrections for the non-equal charges of the two ligands for 

simulations with periodic boundary condition.  

Firstly, we provide details about equilibrium free energy simulations. In equilibrium alchemical transformation, the 

intermediate states are equally spaced from min 0.00   to max 1.00   with increments of 0.05eq  , leading to 21 

states in total. The phase space overlap between neighboring states is checked with the quantitative estimator of phase 

space overlap named overlap matrix.1 The matrix relates non-linearly with the covariance matrix of MBAR. The matrix O 

in the current case is a 21 x 21 matrix and its element Oij gives the average possibility of finding a sample from state i at 

state j.1 According to previous experience, reliable free energy estimates can be obtained when the main diagonal and its 

neighbors are appreciably larger than 0.03.1 In each alchemical intermediate state, 9000 cycles energy minimization, 600 

ps NVT heating from 0 K to 303 K and 2 ns NPT equilibration are performed in order to get rid of the bias due to the initial 

configuration. After equilibration, 2 ns production run with a sampling interval of 2 ps is performed to accumulate the 

times-series data. Isotropic position scaling and Berendsen barostat is implemented to regulate the pressure. As there are 

21 windows and 2 types of simulation (solvated ligand and protein-ligand systems), for each mutation of ligand the total 

sampling time is 84 ns. To get a theoretically rigorous estimate of statistical uncertainty, we calculate the autocorrelation 

time   of the partial derivative of the alchemical Hamiltonian 
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1-2 and the statistical inefficiency 1 2   . The 

whole dataset is then subsampled by   to extract the independent data points.3-5 Three post-processing methods including 

TI with trapezoid rule for numerical integration,6-8 the bidirectional reweighting regime of BAR,9 and multistate 

reweighting estimator of MBAR are used to extract the free energy estimates from alchemical free energy simulations.10-

11 According to our previous experience, these three methods are among the most reliable and efficient free energy 

estimators based on equilibrium dynamics.5, 12-14 



Secondly, we provide details about the nonequilibrium transformation. The initial configurations for nonequilibrium 

transformations are obtained during the above equilibrium alchemical transformation. As the window spacing used in 

equilibrium sampling is already dense enough for reliable reweighting with equilibrium perturbation-based estimators, to 

illustrative the feature of nonequilibrium pulling, we use a larger increment of 0.1non eq   , with which the instantaneous 

perturbation is relatively large. We calculate the statistical inefficiency and extract 100 independent configurations in each 

alchemical intermediate. Bidirectional pulling simulations are initiated from these uncorrelated configurations and 

nonequilibrium works are accumulated. The alchemical order parameter   is changed by 0.001 every 200 fs. According 

to our previous experience on nonequilibrium stratification in the alchemical space, this transformation speed is already 

very slow and able to obtain converged results with reasonable computational costs even in hard-to-converge cases.3-5 The 

resulting overall computational cost in the nonequilibrium alchemical transformation is similar to that in the equilibrium 

one. According to our previous work, the overall statistical uncertainty is non-linearly dependent on the overall simulation 

time.4, 15 Thus, the overall statistical uncertainties in equilibrium and nonequilibrium transformation should be similar.  

  



Table S1. Detailed free energy differences from MM/PBSA and MM/GBSA. gasH  is the gas-phase enthalpy change 

upon binding or the protein-ligand interaction energy. solG  is the solvation free energy and the subscripts of PB and GB 

denote the implicit solvent model used to calculate the solvation free energy. MM/PBSAG  and MM/GBSAG  are the 

relative binding affinity of ligands with AGI as the reference.  

 

Ligand gasH  SD ,sol PBSAG  SD ,sol GBSAG  SD MM/PBSA SD MM/GBSA SD 
MM/PBSAG  SD 

MM/GBSAG  SD 

1NP -35.51  0.07  27.91  0.06  13.09  0.05  -7.60  0.10  -22.41  0.09  -0.64  0.22  11.59  0.19  

2NP -34.27  0.08  29.32  0.08  12.81  0.06  -4.95  0.12  -21.46  0.10  2.01  0.23  12.55  0.20  

27K -41.46  0.16  33.24  0.12  13.07  0.11  -8.22  0.21  -28.40  0.20  -1.26  0.29  5.61  0.26  

CLM -47.17  0.16  49.92  0.19  18.59  0.10  2.75  0.25  -28.58  0.19  9.71  0.32  5.42  0.25  

G50 -63.17  0.18  53.59  0.13  26.79  0.09  -9.58  0.23  -36.37  0.20  -2.62  0.30  -2.37  0.26  

AGI -50.80  0.14  43.83  0.14  16.79  0.08  -6.96  0.20  -34.00  0.17  0.00  0.28  0.00  0.24  

CUE -39.29  0.14  38.72  0.10  10.56  0.11  -0.56  0.18  -28.73  0.18  6.40  0.27  5.27  0.24  

LU2 -47.88  0.12  50.21  0.12  20.88  0.10  2.33  0.18  -26.99  0.16  9.29  0.27  7.01  0.23  

QUE -51.71  0.14  55.93  0.15  22.85  0.11  4.21  0.21  -28.86  0.18  11.17  0.29  5.14  0.24  

 

 

 

 

  



Table S2. Number of hydrogen bonds formed between the ligand and its surroundings in ligand-only and protein-ligand 

systems. 
hbondN  denotes the number of hydrogen bond and SD is the standard deviation of the mean of 

hbondN . 

Ligand 

ligand complex 

hbondN  SD hbondN  SD 

1NP 5.08  0.08  1.99  0.04  

2NP 6.20  0.08  3.30  0.04  

27K 4.36  0.07  2.54  0.04  

CLM 7.83  0.09  5.70  0.05  

G50 10.01  0.11  6.65  0.06  

AGI 6.19  0.08  5.18  0.05  

CUE 6.17  0.09  5.35  0.05  

LU2 6.48  0.09  6.21  0.06  

QUE 6.92  0.10  7.43  0.07  

 

  



Figure S1. The overlap matrices of alchemical transformation from AGI to LU2 in a) ligand-only system and b) protein-

ligand system for overlap check. The plot clearly shows that the elements are large enough for reliable reweighting.  

 

 

  



Figure S2. Hydrogen bonds formed between the ligand and its surroundings in protein-ligand system (left) and ligand-

only system (right). The widths of the average lines are the standard error of the mean of the number of hydrogen bonds. 

  

  

 



 

 

  



Figure S3. Interaction maps for protein-ligand complexes obtained from equilibrated structures.  

 

 

 



 

  



Figure S4. Residue-specific numbers of contacts between alpha-C atoms and the ligand in protein-ligand complexes. 

Red dots denote contacts larger than 10, green dots represent contact number between 5 and 10, blue ones are those 

larger than 1, and the other are represented by white dots. 



 

  



Figure S5. Time evolution of secondary structures of protein-ligand complexes. The helical structure is plotted with green 

dots, the beta component is plotted with red dots, and the coil region is represented by blue dots.  
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