Supporting Information (SI)

Band alignment and optical features in Janus-MoSeTe/X(OH)₂ (X = Ca, Mg) van der Waals heterostructures

Dat D.Vo^{1,2}, Tuan V. Vu^{1,2}, Nguyen V. Hieu³,

Nguyen N. Hieu⁴, Huynh V. Phuc⁵, Nguyen T. T. Binh^{4,*}, Le T.T. Phuong, M. Idrees⁶, Bin Amin⁷,

Chuong V. Nguyen^{8,*}

¹Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam

²Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam

³Department of Physics, University of Education, The University of Da Nang, Da Nang, Vietnam

⁴Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam

⁵Division of Theoretical Physics, Dong Thap University, Cao Lanh 870000, Vietnam

⁶Department of Physics, University of Education, Hue University, Hue, Vietnam.

⁷Department of Physics, Hazara University, Mansehra 21300, Pakistan

⁸Department of Physics, Abbottabad University of Science and Technology, Abbottabad 22010, Pakistan

⁹Department of Materials Science and Engineering, Le Quy Don Technical University, Ha Noi, Vietnam

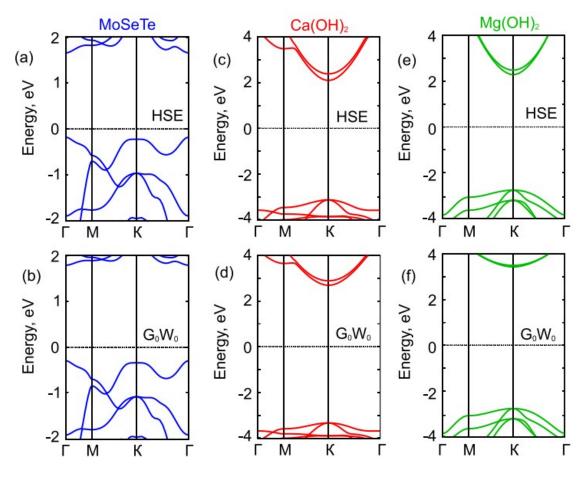


Fig. S1. Band structures of (a, b) Janus-MoSeTe, (c, d) Ca(OH)₂ and (e, f) Mg(OH)₂ monolayers at the equilibrium state calculated by (HSE, G₀W₀) methods, respectively.

To obtain more accurate band structure, we apply the HSE06 and G_0W_0 methods. The calculated band structures of Janus-MoSeTe, Ca(OH)₂ and Mg(OH)₂ monolayers at the equilibrium state with HSE06 and G_0W_0 methods are depicted in Fig. S1. The band gaps of the Janus-MoSeTe, Ca(OH)₂ and Mg(OH)₂ monolayers given by PBE/HSE06/G₀W₀ methods are calculated to be 1.27/1.71/2.14 eV, 3.68/5.18/5.86 eV, and 3.25/4.75/6.51 eV, respectively. However, despite the band gaps, the dispersions of the band structures with three methods exhibit the similar tendency in both valence band maximum and conduction band minimum. Thus, the PBE functional is used here and reliable results can be expected. In addition, both HSE06 and G_0W_0 calculations are enormously computationally intensive and demanding as to PBE method. Therefore, the electronic properties compared of the $MoSeTe/X(OH)_2$ at the equilibrium state and under electric field have been computed using the PBE functional in our present study. Whereas, the optical properties of such heterostructures are obtained by solving the Bethe-Salpeter equation (BSE) on top of single-shot G_0W_0 calculations, that include screening and excitonic effects.

^{*}Corresponding authors: <u>chuongnguyen11@gmail.com</u> (C. V. Nguyen); <u>nguyentthanhbinh8@duytan.edu.vn</u> (N.T.T Binh)

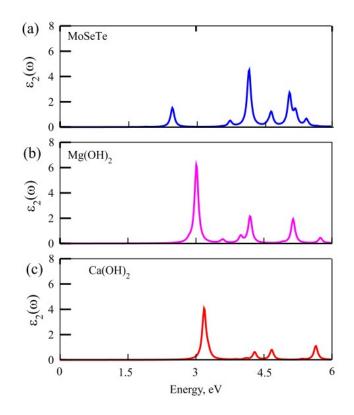


Fig. S2. Imaginary part of the dielectric function of the isolated (a) MoSeTe, (b) Mg(OH)₂ and (c) Ca(OH)₂ monolayers.

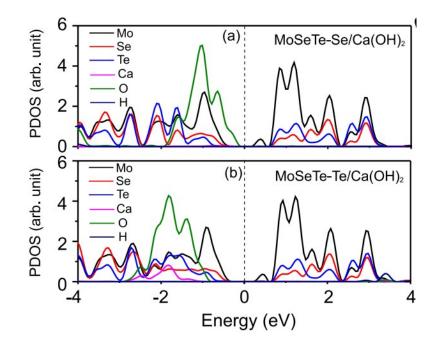


Fig. S3. Partial density states (PDOS) of the MoSeTe-Se/Ca(OH)₂ and (b) MoSeTe-Te/Ca(OH)₂ heterostructures. The Fermi level is set to be zero and marked by the dashed line.

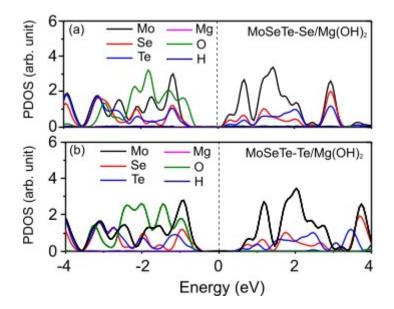


Fig. S4. Partial density states (PDOS) of the MoSeTe-Se/Mg(OH)₂ and (b) MoSeTe-Te/Mg(OH)₂ heterostructures. The Fermi level is set to be zero and marked by the dashed line.