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1 Computational details

To calculate the non-adiabatic eigenstates of Ĥmol in Eq.1 (main text), we diagonalize the

Hamiltonian matrix written on the direct-product basis (|N〉, |Z〉)⊗ (|0〉, |1〉, ..., |m〉), where

|v〉 are the eigenstates of the harmonic oscillator in the last term of Eq.1 (main text) and

m is large enough to ensure convergence of calculated properties. Results in Figures 2 and

3 (main text) are obtained truncating the vibrational space to m = 12, thus leading to an

S space of dimension 26. For is defined on a 80 points grid, with spacing 0.022 eV and For

derivatives are calculated as finite differences, setting the step size equal to the solvent grid

spacing. Equation 2 is integrated using the Short-Iterative-Arnoldi (SIA) algorithm with a

time step 1.5 fs in Fig.2 (main text) and 0.05 fs in Figure 3 (main text).1,2 Actually, Eq.3

(main text) does not properly describe the relaxation towards equilibrium. We trace this

problem to the S-B2 interaction terms (third and fourth terms in Eq. 3, main text) that,

even close to the equilibrium, lead to a spurious mixing among states belonging to the ground

and excited state electronic manifolds. To fix this problem we force these mixing terms to

vanish at the equilibrium, substituting in Eq. 3 (main text):

ρab → ρab

[
1−

∫
dForσ11(For; t)

]
, ∀ a 6= b, (1)

where σ11(For; t) is the For-dependent ground state population. Results in Figs.2 and 3 (main

text) are obtained in this approximation.

ĤRET is written on the Hilbert space spanned by (|NDNA〉, |NDZA〉, |ZDNA〉, |ZDZA〉)⊗

(|0〉D, ..., |n〉D, ...) ⊗ (|0〉A, ..., |m〉A, ...), where we truncate the harmonic oscillator basis im-

posing that n + m < β, with β large enough to reach convergence on calculated properties.

In Figures 4 and 5 (main text), we set β = 13, for a grandtotal of N = 364 basis states. Due

to the large dimension of the RET-pair basis, we only account for Rab,cd terms in the Redfield

tensor relevant to states with |ωab − ωcd| ≤ α, with α = 0.02 eV.3,4 Larger α values slow

down the calculation without affecting the results. For the RET-pair, the hybrid density
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operator is defined on a grid of 23×23 points, with step ∆F or
D = 0.046 eV and ∆F or

A = 0.056

eV. Finite-difference expressions for the derivatives are calculated using the same steps. The

SIA algorithm (time step 1.5 fs) is used to integrate the differential equations. To speed up

the calculations without compromising the accuracy of the results, states higher in energy

than the initial coherent state are neglected.

The global A∗ population operator is defined measuring the weight of the A∗ state:5

P̂A∗=|A∗〉〈A∗|,6,7 where |A∗〉 = −√ρA|NA〉+
√

1− ρA|ZA〉, with ρA = 0.5·(1−zA/
√
z2A + τ 2A).

2 Adiabatic system-solvent Hamiltonian and steady-state

optical spectra

The Hamiltonian for a polar molecule in a polar solvent reads:

Ĥ(For) = Ĥmol − Forρ̂+
F 2
or

4εor
, (2)

where all quantities are defined in the main text. The above Hamiltonian describes a molecule

in terms of coupled electronic and vibrational states, fully accounting for the non-adiabatic

nature of the electron-vibration coupling. The For-dependent Hamiltonian in equation (2)

is diagonalized, for different For values, on the non-adiabatic electron-vibration basis (as

defined in the main text), to get For-dependent vibronic eigenstates |ψa(For)〉 and energy

Ek(For). These energies define relevant potential energy curves. For-dependent spectra

can be calculated from the transition dipole monents µab(For) = 〈ψa(For)|µ̂|ψb(For)〉 and

frequencies ωab(For) = (Ea(For)−Eb(For))/~, assigning a Gaussian lineshape to each vibronic

line, with standard deviation σ.

To account for thermal disorder and the resulting inhomogeneous broadening, spectra are

calculated as ensamble averages, summing over the spectra calculated at different For values,

weighted for the relevant Boltzmann distribution. In particular, for absorption spectra we
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Figure 1: DCM spectra calculated in CHCl3 and DMSO. Top panel compares absorption
spectra calculated in the main text (Fig.3d) with those calculated upon thermal averaging
on the ground state distribution (dotted blue and black lines refer to CHCl3 and DMSO,
respectively). Bottom panel compares long-time fluorescence spectra calculated in the main
text (Fig.3j) with steady-state fluorescence spectra calculated upon thermal averaging on
the fluorescent state distribution. All model parameters are the same as in the main text;
in Eqs.3 and 4 we set σ = 0.06 eV.

account for the Boltzmann distribution associated with the lowest vibronic eigenstate (the

ground state) E1(For), while for emission spectra we consider the energy of the fluorescent

state, Ef (For). The explicit expression for the absorption spectrum is:9

A(ω) ∝ ω
∑
For

exp

[
−E1(For)

kbT

]∑
a

|µa1(For)|2 exp

[
−(~ωa1(For)− ~ω)2

2σ2

]
, (3)

where the first sum runs over different solvent configurations, For, while the second sum runs

over all the excited For-dependent eigenstates of the dye.
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Figure 2: DCM experimental absorption (top panel) and fluorescence (bottom panel) spectra
collected in CHCl3 (blue) and DMSO (red). Data adapted from Ref.8

Similarly, steady-state fluorescence spectrum is calculated as:9

F (ω) ∝ ω3
∑
For

exp

[
−Ef (For)

kbT

]∑
a

|µaf (For)|2 exp

[
−(~ωaf (For)− ~ω)2

2σ2

]
, (4)

where the second sum runs over all the system eigenstates lower in energy than the fluorescent

state, |ψf (For)〉. The fluorescent state is singled out by looking at the transition dipole

moments from the ground state, since the fluorescent state will be the first excited state

with a large |〈ψf (For)|µ̂|ψ1(For)〉|.

Fig.1 compares absorption and steady-state (long t′ behavior) fluorescence spectra calcu-

lated for DCM in CHCl3 and DMSO according to equations (3) and (4), setting σ = 0.06 eV,

with spectra obtained from the Fourier transform of the relevant dipole-dipole correlation

functions, as discussed in the main text. The agreement is very good, a result that con-
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firms the reliability of the dynamical behavior calculated using the Redfield-Smoluchowsky

approach. Specifically, we observe that minor differences in bandshapes are expected: in

the steady state calculation, a Gaussian bandshape is imposed to each vibronic line with

an ad hoc choice of σ. On the contrary bandshapes come out naturally from the Redfield-

Smoluchowsky dynamics, without any ad hoc hypothesis on bandshapes and bandwidths.

3 Redfield tensor

The expression for the element of the Redfield tensor Rab,cd (Eq.3, main text) reads:1

Rab,cd = −δb,d
∑
e

Θ+
ae,ec − δa,c

∑
e

Θ−de,eb + Θ+
db,ac + Θ−db,ac, (5)

where the pedices run on the eigenstates of the relevant system, either Ĥmol or ĤRET , δb,d

and δa,c are Kronecker delta, and Θ
+(−)
db,ac is the generic element of the kinetic coefficient tensor,

Θ+(−).

When the system S is defined by a single dye, the elements of Θ+(−) are:3

Θ+
db,ac = γ

(
ddbd

†
ac〈n̂(ωac)〉b + d†dbdac〈n̂(ωca) + 1〉b

)
, (6)

Θ−db,ac = γ
(
ddbd

†
ac〈n̂(ωbd)〉b + d†dbdac〈n̂(ωdb) + 1〉b

)
, (7)

where d(†)ac = 〈ψa|d̂(†)|ψc〉 is the matrix element of the creation (annihilation) operator associ-

ated with the molecular vibration, and 〈n̂(ωac)〉b = (exp [~ωac/kbT ]−1)−1 is the Bose-Einstein

distribution relevant to the Redfield bath, B1. As discussed in the main text, γ measures

the SB1 coupling strength.

When the system S describes a RET-pair, the elements of the kinetic coefficient tensors
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read:3

Θ+
db,ac = γ

[
ddbd

†
ac〈n̂(ωac)〉b + d†dbdac〈n̂(ωca) + 1〉b + adba

†
ac〈n̂(ωac)〉b

+ a†dbaac〈n̂(ωca) + 1〉b + ddba
†
ac〈n̂(ωac)〉b + d†dbaac〈n̂(ωca) + 1〉b

+ adbd
†
ac〈n̂(ωac)〉b + a†dbdac〈n̂(ωca) + 1〉b

]
(8)

and

Θ−db,ac = γ
[
ddbd

†
ac〈n̂(ωbd)〉b + d†dbdac〈n̂(ωdb) + 1〉b + adba

†
ac〈n̂(ωbd)〉b

+ a†dbaac〈n̂(ωdb) + 1〉b + ddba
†
ac〈n̂(ωbd)〉b + d†dbaac〈n̂(ωdb) + 1〉b

+ adbd
†
ac〈n̂(ωbd)〉b + a†dbdac〈n̂(ωdb) + 1〉b

]
, (9)

where d̂(†) and â(†) are the boson creation (annihilation) operators associated with the vi-

brational coordinate on D and A, respectively.

4 Derivation of Eq. 3, main text

We consider the simplest case where S corresponds to a single molecule. The orientational

component of the solvent reaction field can be treated as an effective harmonic mode,10 the

relevant Hamiltonian being:

ĤB2 =
~ωor

2

(
f̂ 2
or + p̂2or

)
, (10)

where ωor is the frequency of the polar solvation mode, and f̂or (p̂or) is the relevant coordinate

(momentum) operator. In the overdamped limit (see below) the frequency ωor becomes

irrelevant and disappears from the equations. The interaction between the molecule and the
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polar solvent is:

ĤSB2 = −
√
~ωor2εorf̂orρ̂, (11)

where εor is the solvent orientational relaxation energy and ρ̂ is the system ionicity operator

(proportional to the molecule dipole moment operator), defined in the main text.

We perform a partial Wigner transformation with respect to the solvent degrees of free-

dom11,12 and rewrite Eqs.10 and 11 as:

Hw
B2(for, por) =

~ωor

2

(
f 2
or + p2or

)
, (12)

Ĥw
SB2(for) = −

√
~ωor2εorforρ̂, (13)

where the w apex stands for partial Wigner transform. In other words, Ĥw
B2 is transformed

in a continuous function of for and por and Ĥw
SB2 in a continuous function of for. The same

transformation is applied to the density operator so that the matrix elements of the density

operator, σab, become functions of for and por.

We start at time t = 0 with disentangled S-B2 states, so that the density operator is:

σ̂w(for, por; t = 0) = σ̂ ⊗ wB2(for, por), (14)

where wB2(for, por) is a continuous function of for and por representing the solvent initial

distribution.

The generic element of the density matrix, σw
ab = σw

ab(for, por; t), evolves in time according
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to the following equation:13,14

∂σw
ab

∂t
= −iωabσ

w
ab +

∑
c,d

Rab,cdσ
w
cd

+

{
−
√
~ωor2εor
i~

for
∑
c

(ρacσ
w
cb − σw

acρcb)

−
√
~ωor2εor

2~
∑
c

(
ρac

∂σw
cb

∂por
+
∂σw

ac

∂por
ρcb

)

+ ωor

(
for

∂σw
ab

∂por
− por

∂σw
ab

∂for

)

+ ζor
∂

∂por

(
porσ

w
ab +

kbT

~ωor

∂σw
ab

∂por

)}
, ∀ a, b = 1, ..., N, (15)

where the first line of the right hand side (rhs) accounts for Liouvillian as well as Redfield

dynamics. The second line describes the effect of the solvent on the system dynamics, whereas

the third line accounts for the system-to-solvent feedback. The fourth and fifth lines describe

the polar solvent dynamics as affected by the drift-diffusion Fokker-Planck term. ζor is the

solvent friction coefficient, kb is the Boltzmann constant and T is the temperature.

Since for is an overdamped coordinate (i.e. ζor � ωor), the corresponding momentum

por rapidly reaches equilibrium.15 Following Ref.16 we integrate por out of Eq.15 to get:

∂σw
ab

∂t
= −iωabσ

w
ab +

∑
c,d

Rab,cdσ
w
cd

−
√
~ωor2εor
i~

for
∑
c

(ρacσ
w
cb − σw

acρcb)

− ωor
∂

∂for
(p̄orσ

w
ab), ∀ a, b = 1, ..., N, (16)

where σw
ab = σw

ab(for; t) =
∫
dpor σ

w
ab(for, por; t) and in the bottom line we introduced p̄orσw

ab(for; t)

=
∫
dpor porσ

w
ab(for, por; t). To obtain the momentum equation we multiply both members of
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Eq.15 by por and integrate with respect to por, getting:

∂

∂t
(σw

abp̄or) = −iωabσ
w
abp̄or +

∑
c,d

Rab,cdσ
w
cdp̄or

−
√
~ωor2εor
i~

for
∑
c

(ρacσ
w
cbp̄or − σw

acp̄orρcb)

− ωor

(
forσ

w
ab +

∂

∂for
σw
ab〈p2or〉

)
+

√
~ωor2εor

2~
∑
c

(ρacσ
w
cb + σw

acρcb)

− ζorσw
abp̄or, ∀ a, b = 1, ..., N, (17)

where we used the definition σw
ab(for; t)〈p2or〉 =

∫
dpor p

2
orσ

w
ab(for, por; t).

The for derivative of Eq.17 leads to:

1

ζor

∂2

∂for∂t
(σw

abp̄or) = −iωab
1

ζor

∂

∂for
σw
abp̄or +

1

ζor

∂

∂for

∑
c,d

Rab,cdσ
w
cdp̄or

−
√
~ωor2εor
i~

1

ζor

∂

∂for

[
for
∑
c

(ρacσ
w
cbp̄or − σw

acp̄orρcb)
]

− ωor
1

ζor

∂

∂for

(
forσ

w
ab +

∂

∂for
σw
ab〈p2or〉

)
+

√
~ωor2εor

2~
1

ζor

∂

∂for

∑
c

(ρacσ
w
cb + σw

acρcb)

− ∂

∂for
(σw

abp̄or), ∀ a, b = 1, ..., N, (18)

Exploiting Eq.16, we rewrite the last line on the right hand side of Eq.18 as:

− ∂

∂for
(σw

abp̄or) =
1

ωor

∂σw
ab

∂t
+

1

ωor

iωabσ
w
ab −

1

ωor

∑
c,d

Rab,cdσ
w
cd

+

√
~ωor2εor
i~

1

ωor

for
∑
c

(ρacσ
w
cb − σw

acρcb), ∀ a, b = 1, ..., N. (19)

Combining Eq.19 with 18 and neglecting all terms proportional to p̄or/ζor (overdamped
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limit), we get:

ζor
ωor

∂

∂t
σw
ab = − ζor

ωor

iωabσ
w
ab +

ζor
ωor

∑
c,d

Rab,cdσ
w
cd

−
√
~ωor2εor
i~

ζor
ωor

for
∑
c

(ρacσ
w
cb − σw

acρcb)

+
∂

∂for

{
−
√
~ωor2εor
2~

∑
c

(ρacσ
w
cb + σw

acρcb)

+ ωorforσ
w
ab + ωor

∂

∂for
σw
ab

kbT

~ωor

}
, ∀ a, b = 1, ..., N, (20)

where we used 〈p2or〉 = kbT/~ωor. Rescaling the total density operator as σ̂w = σ̂wζor/ωor,

setting For =
√
~ωor2εorfor and introducing the solvent longitudinal relaxation time τl =

ζor/ω
2
or,17 we finally get:

∂

∂t
σw
ab(For; t) = −iωabσ

w
ab(For; t) +

∑
c,d

Rab,cdσ
w
cd(For; t)

+
−For

i~
∑
c

(ρacσ
w
cb(For; t)− σw

ac(For; t)ρcb)

− εor
τl

∑
c

(
ρac

∂σw
cb(For; t)

∂For

+
∂σw

ac(For; t)

∂For

ρcb

)
+

1

τl

∂

∂For

(
Forσ

w
ab(For; t) + kbT2εor

∂

∂For

σw
ab(For; t)

)
. (21)

A well-known problem of coupled quantum-classical dynamics is due to the fourth term in

Eq.21 that breaks the positivity of the density matrix.18–20 A mean-field approximation to

this term solves the problem:

−εor
τl

∑
c

(
ρac

∂σcb(For; t)

∂For

+
∂σac(For; t)

∂For

ρcb

)
' −2εor

τl
〈ρ̂(For; t)〉

∂σab(For; t)

∂For

, (22)

where 〈ρ̂(For; t)〉 = TrS [ρ̂σ̂(For; t)]. Plugging this approximation into Eq.21, we get Eq. 3 in

the main text.
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5 DA energy gap

The Hamiltonian that describes the RET-pair in solution reads:

Ĥ(F or
D , F

or
A ) = ĤRET − F or

D ρ̂D − F or
A ρ̂A +

(F or
D )2

4εorD
+

(F or
A )2

4εorA
, (23)

where all variables and operators are defined in the main text. Diagonalizing the above

Hamiltonian for different (F or
D , F

or
A ) values, we get the potential energy surfaces (PES) with

respect to F or
D , F

or
A , namely Ek(F or

D , F
or
A ), ∀k = 1, ..., N , where N is ĤRET basis dimension.

In Fig.5b in the main text, colored lines show solvent configurations where degeneracy is

observed between the lowest state of the excited energy donor, ED∗,1(F
or
D , F

or
A ), and each of

the five lowest states of the excited energy acceptor, EA∗,i(F
or
D , F

or
A ), ∀i = 1, ..., 5. To single

out ED∗,1 we look for the first eigenstate with 〈ρ̂D〉 > 0.5. Similarly, to find EA∗,i, ∀i =

1, ..., 5, we look for the five lowest states having 〈ρ̂A〉 > 0.5.

6 Equation of motion for 2-dyes

Eq. 3 in the main text can be expanded to account for the interaction of the polar solvent with

the two molecules in the RET-pair. Specifically, the energy donor (D) and energy acceptor

(A) molecules feel two different orientational solvation fields, F or
D and F or

A , respectively. The
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dynamical equation for the RET-system interacting with B1 and B2 reads:

∂

∂t
σab = −iωabσab +

∑
c,d

Rab,cdσcd

+
−F or
D

i~
∑
c

(ρacD σcb − σacρcbD)− F or
A
i~
∑
c

(ρacAσcb − σacρcbA)

− εorD
τl

∑
c

(
ρacD

∂σcb
∂F or
D

+
∂σac
∂F or
D
ρcbD

)
− εorA

τl

∑
c

(
ρacA

∂σcb
∂F or
A

+
∂σac
∂F or
A
ρcbA

)
+

1

τl

∂

∂F or
D

(
F or
D σab + kbT2εorD

∂

∂F or
D
σab

)
+

1

τl

∂

∂F or
A

(
F or
A σab + kbT2εorA

∂

∂F or
A
σab

)
,

∀ a, b = 1, ..., N, (24)

where all quantities are defined in the main text.

In order to preserve the positivity of the density operator, we enforce a mean-field ap-

proximation setting:

−ε
or
D
τl

∑
c

(
ρacD

∂σcb
∂F or
D

+
∂σac
∂F or
D
ρcbD

)
− εorA

τl

∑
c

(
ρacA

∂σcb
∂F or
A

+
∂σac
∂F or
A
ρcbA

)
'

−2εorD
τl
〈ρ̂D〉(F or

D )
∂σab
∂F or
D
− 2εorA

τl
〈ρ̂A〉(F or

A )
∂σab
∂F or
A
, (25)

where 〈ρ̂D(A)〉(F or
D(A)) = TrS [ρ̂D(A)σ̂(F or

D , F
or
A )]. Being interested in RET, we do not follow the

complete relaxation of the system towards the ground state, so that the correction described

in Eq.1 is not applied.

7 RET videos

Videos of the first 4.5 ps of the energy transfer dynamics in glassy and liquid CHCl3 are

provided. Same simulation details used in Fig.5, main text.
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