Electronic Supplementary Information

Weak-field Ligands Enable Inert Early Transition Metal Oxides to Convert Methane to Methanol: The Case of ZrO

Benjamin A. Jackson and Evangelos Miliordos*

Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA

Corresponding Author

* E-mail: emiliord@auburn.edu

Figure S1. CCSD(T)/5Z PECs of ZrO with respect to Zr-O distance without and including the correlation energy of the zirconium sub-valence $4s^24p^6$ electrons. Shown in 5A is CCSD(T) and in 5B is C-CCSD(T). The zero of each scale is set equal to the equilibrium energy of the ground state $X^1\Sigma^+$ at the corresponding CCSD(T)/5Z level or C-CCSD(T)/5Z level.

Figure S2. MN15/TZ. Full reaction pathway. The zero for all spins is relative to the lowest energy state along the overall reaction pathway.

Figure S3. MRCI/TZ. Comparison of spin-orbit effects on plotted potential energy curves. Shown in solid lines are MRCI energies. Dashed/dotted lines show spin-orbit splitting for the low lying states of ZrO.

Figure S4. MN15/TZ. Reaction pathway for the conversion of methane to methanol catalyzed by ZrO with and without the addition of an NH₃ ligand for various ZrO spin multiplicities. Structures are shown for the triplet [2+2] reaction mechanism and the radical quintet.

Table S1. Spectroscopic constants for the low-lying triplet electronic states with and without Spin-Orbit. Equilibrium energy E_e (a.u.), bond length r_e (Å), harmonic vibrational frequency ω_e (cm⁻¹), anharmonicity ω_{exe} (cm⁻¹) and $\Delta G_{\frac{1}{2}} = E_{\nu=1} - E_{\nu=0}$ (cm⁻¹) for the ³ Δ and ³ Π states for ⁹⁰Zr¹⁶O. Energies calculated at the MRCI/TZ level.

State	-E _e	r _e	ω _e	ω _e X _e	$\Delta G_{\frac{1}{2}}$
$a^{3}\Delta$	121.60171	1.759	910	3.40	902
$a^{3}\Delta_{1}$	121.60320	1.759	909	3.38	901
$a^{3}\Delta_{2}$	121.60182	1.759	910	3.44	902
$a^{3}\Delta_{3}$	121.60022	1.759	910	3.41	902
$b^3\Pi$	121.55540	1.768	866	3.21	864
$b^{3}\Pi_{0^{-}}$	121.55678	1.768	867	3.18	865
$b^{3}\Pi_{0}^{+}$	121.55666	1.768	869	3.44	868
$b^3\Pi_1$	121.55550	1.768	866	3.19	864
$b^3\Pi_2$	121.55418	1.768	866	3.24	863

Table S2. MRCI/5Z Spin-Orbit splitting for the lowest electronic states at r(Zr-O) 1.75 Å and excitation energy T_e (cm⁻¹). Only the states labeled in ^a and ^b showed considerable second order coupling effects.

State	Ω	Te	State	Ω	Te	State	Ω	Te
$X^1\Sigma^+$	0-	0	$B^{1}\Pi$	1	15,579	$D^1\Gamma$	4	19,094
$a^{3}\Delta$	1	966	$d {}^{3}\Phi$	2	16,087	$f^{3}\Delta$	1	22,368
	2	1,269		3	16,653		2	22,667
	3	1,622		4	17,214		3	22,942
$A^1\Delta$	2	5,781	$C^1\Sigma^+$	0^+	18,579	$E^{1}\Phi$	3	23,871
$b^{3}\Pi$	0-	11,204	$e^{3}\Pi$	0-	19,024 ^a	$F^1\Delta$	2	25,465
	0^+	11,219		0^+	19,086	$2^{1}\Pi$	1	27,390
	1	11,473		1	19,226 ^b	$\mathcal{J}^1\Sigma^+$	0^+	28,472
	2	11,776		2	19,244			
$C^{3}\Sigma^{-}$	0^+	14,904	$l^3\Sigma^+$	1	19,072 ^b			
	1	14,983		0-	19,167 ^a			

		Singlet			Triplet		Ouintet			
		ZrO			ZrO			ZrO		
Zr	0.000000	0.000000	0.283611	0.000000	0.000000	0.286889	0.000000	0.000000 0.000000 0.31782		
0	0.000000	0.000000	-1.418053	0.000000	0.000000	-1.434444	0.000000	0.000000	-1.589141	
		CC			CC			CC		
С	3.606386	-0.009322	-0.000111	-2.358773	0.193754	0.000076	-2.35523	0.000688	-0.001714	
Н	3.246892	0.123959	1.018641	-2.959541	0.333756	0.894627	-2.002205	-0.78249	-0.697649	
Н	3.249405	0.8083	-0.623756	-1.998064	-0.842776	-0.000219	-2.002325	0.996	-0.328947	
Н	3.242582	-0.956124	-0.395135	-1.564895	0.952926	-0.000046	-2.004057	-0.212996	1.024605	
Н	4.693793	-0.013457	-0.000205	-2.960013	0.334038	-0.894117	-3.439613	0.00069	-0.002752	
Zr	-0.467703	0.007908	0.000095	0.409741	-0.316738	-0.000021	0.155844	-0.000303	0.00085	
0	-2.170357	-0.027885	-0.000335	0.905688	1.341133	0.000019	2.168225	0.00085	-0.00237	
		aTS1			aTS1		rTS1			
С	-1.846373	-0.139583	0.000001	-1.917699	-0.190402	0.000007	2.780425	-0.388258	-0.000003	
Н	-1.941222	-0.775364	0.893874	-2.498366	0.062252	0.888513	1.861056	0.393235	0.000009	
Н	-1.941033	-0.776	-0.893434	-1.840657	-1.290662	-0.000306	3.334366	-0.171631	-0.907015	
Н	-0.945884	1.02234	-0.000029	-0.981318	0.966239	-0.000015	3.334314	-0.171704	0.907056	
Н	-2.671985	0.568638	-0.000381	-2.498565	0.062701	-0.888241	2.344034	-1.382986	-0.000033	
Zr	0.420334	-0.281331	-0.000001	0.456422	-0.269844	0	-0.831258	-0.12192	0	
0	0.220626	1.506388	0.000001	0.133526	1.516957	0.000001	0.711752	1.06743	0.000002	
	[2+	-2] Intermedi	ate	[2+	-2] Intermedi	ate	Radica	al Intermedia	te (RI)	
С	1.879427	0.579393	-0.000027	-1.955006	0.602277	-0.000008	-1.749166	0.003035	-0.003831	
Н	2.076573	-0.06875	-0.898189	-2.515013	0.2672	0.885658	-4.029399	-0.001109	0.001162	
Н	2.076569	-0.068715	0.898162	-2.515161	0.267184	-0.885568	-4.062315	1.032164	-0.296746	
Н	-2.38222	1.252378	0.000204	2.297486	1.435058	-0.000001	-4.053186	-0.77621	-0.74461	
Н	2.562547	1.418426	-0.000039	-1.964973	1.695094	-0.000009	-4.046193	-0.259837	1.045343	
Zr	-0.035224	-0.252419	-0.000017	0.070576	-0.31932	-0.000001	1.109376	-0.000265	0.000289	
0	-1.775135	0.510884	0.000087	1.700582	0.686823	0	-0.785974	0.002263	-0.002337	
		TS2			TS2			TS2		
С	-2.053548	-0.568439	0.016392	2.077059	-0.590028	-0.013407	1.724548	-0.713785	-0.009664	
Н	-1.915616	-1.090651	0.955084	1.765062	-1.290881	-0.775173	0.969527	-1.513164	-0.2043	
Н	-1.8499	-1.172059	-0.859134	2.069731	-0.968534	0.997045	2.191948	-0.835143	0.956787	
Н	-2.974456	-0.006017	-0.052217	2.941595	0.001885	-0.274688	2.42372	-0.651921	-0.834306	
Η	-1.276191	1.44504	0.644416	1.251215	1.502894	-0.632744	1.541512	1.49105	-0.60551	
Zr	0.71947	-0.069974	0.003936	-0.717246	-0.076742	-0.004108	-0.680419	-0.038342	-0.003275	
0	-1.05517	0.879162	-0.117994	1.024987	0.920562	0.116289	1.217847	0.915698	0.109541	
	ZrOHCH3			ZrOHCH3				ZrOHCH3		
С	-2.481019	-0.329331	0.000118	2.466078	-0.328316	0.000066	-2.427353	-0.364842	-0.000015	
Н	-3.068429	-0.136727	0.896272	3.049697	-0.127894	-0.895479	-3.030221	-0.221014	0.894957	

 Table S3. Cartesian coordinates of the MN15/TZ optimal structures without symmetry restrictions.

Н	-2.141039	-1.36099	-0.002274	2.131357	-1.36121	-0.000351	-2.001423	-1.366095	-0.000289
Η	-3.070894	-0.133344	-0.893682	3.04885	-0.128387	0.896269	-3.030479	-0.220639	-0.894752
Η	-1.520251	1.421885	0.000798	1.478954	1.430533	0.000886	-1.584512	1.457458	-0.00016
Zr	0.876593	-0.041971	-0.000048	-0.868068	-0.042772	0.000012	0.867345	-0.043041	0.000005
0	-1.297126	0.483003	0.000012	1.277175	0.483466	-0.000273	-1.310381	0.532621	0.000016

Singlet Triplet Ouintet aTS1 TS2 I2 CC TS2 I2 CC TS2 CC Ι aTS1 Ι rTS1 Ι I2 -51 -1614 -741 -1590 -967 -1051 -956 ZrO ZrO ZrO

Table S4. Harmonic vibrational frequencies (cm⁻¹) of the optimal structures for the coordination complex (CC), first transition state of the [2+2] mechanism(aTS1) and radical mechanism (rTS1), intermediate (I), second transition state (TS2), and the Zr---OHCH₃ intermediate (I2), ZrO + CH₄ \rightarrow Zr + CH₃OH reaction for the lowest singlet, triplet, and quartet states at the MN15/TZ.

	Н	$_{3}$ ZrO + CH ₄	1			F	$_{3}$ ZrO + CH ₄				
CC	rTS1	Ι	TS2	I2	CC	rTS1	Ι	TS2	I2		
91	-1039	-14	-979	90		-1235	-1	-856	45		
106	5	39	182	102	99	44	22	31	85	H ₃ ZrO	H ₃ Zr
117	92	40	215	136	109	64	29	94	110	77	164
159	137	112	249	149	119	84	105	121	117	329	649
184	327	129	305	280	149	145	114	138	127	505	649
319	356	130	334	341	153	154	119	149	167	532	1655
393	367	397	472	477	163	158	154	170	201	577	1655
420	433	398	501	577	166	168	156	179	241	604	1694
512	504	492	530	597	176	175	175	243	331	1672	
535	569	492	590	600	181	363	181	317	443	1688	
563	597	518	606	1032	196	417	182	486	593	1746	
609	698	587	725	1077	640	647	464	608	620		
1253	790	588	821	1171	659	661	465	649	647	F ₃ ZrO	F ₃ Zr
1331	1107	639	967	1287	668	671	635	661	1065	48	75
1365	1260	789	1235	1462	680	681	657	749	1095	146	150
1512	1288	1393	1373	1483	1319	741	664	755	1176	158	152
1546	1415	1393	1432	1494	1326	1133	666	862	1326	161	640
1612	1421	1668	1607	1529	1329	1253	757	1070	1466	167	675
1685	1664	1669	1620	1585	1545	1295	1393	1419	1495	649	677
1729	1672	1725	1666	1630	1549	1419	1393	1433	1496	660	
2989	1723	3156	2985	3087	3037	1430	3157	3150	3090	671	
3079	3090	3334	3184	3176	3139	3092	3334	3302	3168	683	
3156	3210	3335	3269	3185	3160	3212	3335	3317	3211		
3213	3240	3762	3697	3811	3177	3241	3792	3898	3852		

Table S5. Harmonic vibrational frequencies (cm⁻¹) of the optimal structures for the coordination complex (CC), first transition state of the radical mechanism (rTS1), radical intermediate (I), second transition state (TS2), and the $(F_3/H_3)Zr$ --OHCH₃ intermediate (I2), for the $(F_3/H_3)ZrO + CH_4 \rightarrow (F_3/H_3)Zr + CH_3OH$ reaction for the lowest doublet state at the MN15/TZ.

Structure	Singlet	Triplet	Structure	Quintet
CC	-162.45735	-162.44272	CC	-162.32768
aTS1	-162.40341	-162.40508	rTS1	-162.30846
CH₃ZrOH	-162.46253	-162.45778	RI	-162.34720
TS2	-162.28664	-162.30981	TS2	-162.28612
ZrOHCH₃	-162.31385	-162.34203	ZrOHCH3	-162.31722
Zr	-46.64228	-46.67398	Zr	-46.64859
ZrO	-121.98693	-121.97264	ZrO	-121.84463
Structure	H ₃	Structure	F ₃	
H₃Zr CC	-164.17695	F₃Zr CC	-462.13092	
H₃Zr rTS1	-164.16770	F₃Zr rTS1	-462.12149	
H₃Zr RI	-164.20678	F₃Zr RI	-462.16048	
H₃Zr TS2	-164.14534	F₃Zr TS2	-462.10434	
H_3Zr OHC H_3	-164.18308	F_3Zr OHCH $_3$	-462.14193	
H₃Zr	-48.50013	F ₃ Zr	-346.46793	
H₃ZrO	-123.69967	F₃ZrO	-421.65405	

Table S6. Electronic energies (a.u.) of the MN15/TZ optimal structures without symmetry restrictions for the $(F_3/H_3)ZrO + CH_4 \rightarrow Zr(F_3/H_3) + CH_3OH$ and $ZrO + CH_4 \rightarrow Zr + CH_3OH$ reactions.

Table S7. Cartesian coordinates of the MN15/TZ optimal structures without symmetry restrictions for the $(F_3/H_3)ZrO + CH_4 \rightarrow (F_3/H_3)Zr+ CH_3OH$ reaction.

		H ₃ Zr		F ₃ Zr						
Zr	-0.000001	0	-0.015643	Zr	0.000635	-0.000026	0.000533			
Н	1.756298	-0.549921	0.208565	F	-1.137552	-1.527991	-0.000789			
Н	-0.401871	1.795917	0.208569	F	-0.75826	1.746671	-0.000789			
Н	-1.354382	-1.245995	0.208571	F	1.89299	-0.218563	-0.000791			
		H ₃ ZrO				F ₃ ZrO				
Zr	0.267192	0.000772	-0.005163	Zr	-0.005143	0.003836	0.001648			
0	-1.675783	0.006823	-0.023239	0	-0.572959	0.669041	1.79229			
Н	0.657292	-0.114519	1.786608	F	-1.565462	-0.150427	-1.063411			
Н	1.072623	1.545396	-0.623177	F	0.845912	-1.682599	0.196283			
Н	0.988661	-1.516325	-0.770998	F	1.251703	1.221273	-0.73334			
	I	H ₃ Zr CC				F ₃ Zr CC				
Zr	0.574683	-0.189126	-0.000578	Zr	-0.317865	0.006206	-0.000212			
0	-0.18389	1.593134	-0.036917	0	0.3549	-1.870512	0.131421			
Н	2.381644	-0.028169	-0.37383	F	-2.194913	-0.231601	0.018414			
Н	-0.043466	-1.571555	-1.082664	F	0.141874	0.8539	-1.64449			
Н	0.455937	-0.697086	1.769315	F	0.144249	1.081427	1.504702			
С	-2.429777	-0.285659	0.002579	С	2.696948	-0.060961	0.004864			
Н	-2.883447	0.611678	0.410174	Н	2.338371	-0.506358	0.934283			

Н	-1.854724	-0.022456	-0.894182	Н	2.340986	-0.613231	-0.866308				
Н	-3.182478	-1.006771	-0.303408	Н	3.782336	-0.12082	0.010076				
Н	-1.811002	-0.75171	0.777573	Н	2.411111	0.988493	-0.057749				
	Н	I₃Zr rTS1		- F ₃ Zr rTS1							
С	-2.589261	-0.384838	-0.000139	· C	2.856062	-0.045875	0.031774				
Н	-2.053126	-1.330604	0.018062	Н	2.458591	0.965595	-0.002831				
Н	-3.142992	-0.23655	-0.920402	Н	3.077944	-0.450536	-0.948647				
Н	-1.780902	0.522727	-0.000632	Н	1.996221	-0.786658	0.497807				
Н	-3.163898	-0.214019	0.903339	Н	3.66329	-0.145393	0.749538				
Zr	0.694678	-0.117832	-0.000012	Zr	-0.383739	-0.005318	0.001837				
0	-0.653527	1.251775	-0.000012	0	0.826307	-1.298988	0.826678				
Н	2.401606	0.606294	-0.005473	F	-2.17938	-0.602734	0.219453				
Н	0.361388	-1.166283	1.493806	F	-0.102547	1.697501	0.81932				
Н	0.354584	-1.173442	-1.48728	F	0.104893	0.160443	-1.835818				
		H ₃ Zr RI		-		F3Zr RI					
Zr	-1.012547	0.00026	-0.000208	Zr	0.548883	0.000151	0.001287				
Н	1.829772	-0.006006	0.001576	Н	-2.315308	0.015309	0.0498				
С	4.031362	0.00125	-0.000805	С	-4.5329	0.001276	-0.002805				
Н	4.080142	-0.274744	1.038229	Н	-4.600648	0.82223	0.68973				
Н	4.077885	-0.76005	-0.7601	Н	-4.548928	0.191066	-1.06204				
Н	4.06199	1.039815	-0.281232	Н	-4.57526	-1.010651	0.360699				
0	0.86193	-0.002342	0.002155	0	-1.349545	0.012122	0.047219				
Н	-1.540924	1.738174	-0.383084	F	1.190074	-1.671947	0.663731				
Н	-1.546354	-0.536969	1.694195	F	1.226872	1.419764	1.082158				
H	-1.544256	-1.199392	-1.31368	F	1.14734	0.237891	-1.795953				
	I	H ₃ Zr TS2		- - 	I	3Zr TS2					
Zr	-0.624066	0.042357	0.004361	- Zr	-0.468824	-0.00005	-0.011147				
0	1.191153	-0.966415	-0.127862	0	1.397938	-0.000942	-0.884457				
С	1.85926	0.674167	-0.03741	С	3.061184	-0.000134	-0.093695				
Н	1.283466	1.343873	0.616867	Н	3.489888	-0.917901	-0.464876				
Н	1.989473	1.047837	-1.042857	Н	2.764841	0.002836	0.9426				
Н	2.77386	0.350184	0.44173	Н	3.491207	0.915028	-0.469762				
Н	1.495839	-1.56273	0.578158	Н	1.570935	-0.002476	-1.831613				
Н	-1.809562	-0.963459	-1.034205	F	-1.477633	-1.602752	-0.278928				
Н	-0.803149	1.870285	-0.349379	F	-1.478489	1.601467	-0.28272				
Н	-0.652086	-0.09396	1.862611	F	0.498953	0.002712	1.662467				
	H ₃ Z	ZrOHCH3			F ₃ Z	rOHCH3					
Zr	-0.817344	0.034919	0.000004	Zr	-0.524238	-0.027585	0.039483				
0	1.342807	-0.433711	-0.00024	0	1.693461	0.52858	-0.113174				
С	2.550513	0.332695	0.000072	С	2.894313	-0.218213	-0.321119				
Н	3.131332	0.117848	0.894342	Н	3.267861	-0.060959	-1.331221				
Н	2.250123	1.377134	0.000214	Н	2.634223	-1.26165	-0.178682				

Н	3.131607	0.118109	-0.89408	Н	3.645814	0.074866	0.408819
Н	1.473372	-1.392341	0.000425	Н	1.820197	1.485573	-0.135179
Н	-1.342016	0.847937	-1.616192	F	-2.303945	-0.427839	-0.537867
Н	-0.653453	-1.843407	0.002424	F	-0.409653	1.897381	0.319521
Н	-1.342747	0.851461	1.614181	F	0.345582	-1.69774	0.494909

Table S8. Harmonic vibrational frequencies (cm⁻¹) of the optimal structures for the coordination complex (CC), first transition state of the [2+2] mechanism(TS1a) and radical mechanism (TS1r), intermediate (I), second transition state (TS2), and the ZrNH₃---OHCH₃ intermediate (I2), NH₃ZrO + CH₄ \rightarrow NH₃Zr + CH₃OH reaction for the lowest singlet, triplet, and quintet states at MN15/TZ

		Single	et			Triplet						Quintet					
NH ₃ ZrO	CC	aTS1	Ι	TS2	I2	NH3ZrO	CC	aTS1	Ι	TS2	I2	NH ₃ ZrO	СС	rTS1	Ι	TS2	I2
90	77	-1530	55	-748	35	129	57	-1516	55	-1133	34	33	37	-1202	-18	-839	29
127	96	34	68	49	46	139	80	57	68	61	64	72	54	35	4	38	51
357	96	62	92	72	68	325	125	82	92	71	80	300	84	37	6	73	80
425	123	82	101	84	103	471	127	124	101	79	107	358	127	45	20	105	96
546	170	183	118	178	124	488	160	140	118	110	154	383	159	72	26	146	151
989	228	248	251	206	279	940	168	274	251	200	294	584	171	92	84	283	262
1166	301	269	252	252	328	1151	194	313	252	282	308	1134	230	298	100	310	296
1583	370	331	281	351	353	1614	332	439	281	340	323	1595	294	336	115	357	315
1588	433	418	312	361	374	1614	468	449	312	373	365	1596	353	343	295	362	336
3399	517	461	363	434	390	3459	473	505	363	406	423	3438	435	364	338	412	405
3516	537	529	412	545	1038	3577	484	507	412	524	1045	3565	464	380	339	485	1028
3573	957	654	477	675	1062	3591	924	647	477	681	1054	3569	584	578	472	746	1059
	1138	903	519	791	1100		1140	880	519	714	1107		1137	747	474	906	1094
NH ₃ Zr	1293	1123	708	922	1164	NH ₃ Zr	1219	1063	708	855	1163	NH ₃ Zr	1253	1123	585	928	1165
312	1326	1143	1116	1114	1292	359	1352	1163	1116	1113	1299	287	1342	1156	675	1114	1296
424	1360	1187	1135	1188	1454	386	1387	1214	1135	1115	1454	300	1352	1214	1113	1244	1448
516	1543	1404	1386	1418	1483	441	1489	1420	1386	1407	1484	391	1495	1237	1392	1353	1479
1167	1549	1420	1398	1422	1488	1160	1587	1451	1398	1422	1487	1126	1559	1427	1393	1417	1489
1508	1575	1571	1547	1547	1536	1587	1611	1604	1547	1569	1557	1610	1599	1435	1592	1589	1575
1611	1594	1600	1594	1585	1569	1593	1612	1617	1594	1581	1576	1615	1603	1591	1592	1603	1600
3340	2851	1953	2978	3107	3094	3387	2976	1968	2978	3133	3085	3461	2928	1594	3160	2703	3067
3480	2961	2907	3044	3233	3178	3504	3076	2943	3044	3259	3168	3580	3022	3090	3337	3163	3149
3507	3063	3047	3114	3237	3206	3529	3141	3069	3114	3288	3196	3581	3118	3211	3339	3252	3166
	3200	3157	3330	3366	3361		3187	3116	3330	3384	3343		3191	3224	3433	3452	3429
	3399	3380	3441	3492	3487		3457	3452	3441	3517	3489		3444	3435	3566	3575	3552
	3508	3508	3562	3520	3507		3577	3570	3562	3536	3539		3559	3564	3566	3585	3580
	3608	3572	3993	3802	3598	1	3593	3576	3993	3748	3759		3587	3567	3896	3611	3842

		Singlet			Triplet		Quintet			
	,	NH ₃ ZrO			NH ₃ ZrO			NH ₃ ZrO		
Zr	0.33500	-0.32475	-0.00003	0.35776	-0.32643	0.00002	0.16023	-0.15478	-0.00001	
Ν	-1.90472	0.20007	-0.00016	-1.97856	0.16340	0.00013	-2.21648	0.24728	-0.00006	
Н	-2.05569	0.77572	0.83216	-2.52968	-0.06970	0.82179	-2.69768	-0.10790	0.82510	
Н	-2.05651	0.78327	-0.82691	-1.82151	1.17187	0.00220	-2.29008	1.26402	0.00267	
Н	-2.57679	-0.56458	-0.00322	-2.52490	-0.06682	-0.82556	-2.69789	-0.10359	-0.82692	
0	0.82774	1.32438	0.00002	0.80198	1.35973	-0.00003	2.09897	0.42597	0.00001	
		СС			СС			СС		
С	-2.49819	-0.30699	-0.00008	-2.77188	-0.28937	-0.00067	-2.17555	-1.36139	0.03691	
Н	-3.58119	-0.24417	0.00065	-3.39386	-0.30246	0.89041	-1.52761	-1.16755	0.90680	
Н	-2.13675	0.19642	0.91828	-2.16617	-1.20560	0.00227	-1.68908	-1.08956	-0.91018	
Н	-2.13746	0.19991	-0.91660	-2.18383	0.63733	0.00163	-3.10225	-0.79914	0.14776	
Н	-2.22435	-1.36865	-0.00183	-3.38744	-0.30300	-0.89615	-2.38318	-2.42662	0.00643	
Zr	0.00207	-0.14362	-0.00001	0.04044	-0.15529	0.00035	0.41075	-0.03942	-0.03951	
0	0.13668	1.58692	0.00003	0.12095	1.59514	-0.00016	2.41760	-0.26768	0.10309	
Ν	2.28645	-0.40050	-0.00001	2.41243	-0.38640	-0.00064	-1.33889	1.64747	0.03906	
Н	2.71586	-1.32013	0.00039	2.85993	-0.77780	0.82376	-0.90160	2.40343	0.56090	
Н	2.58587	0.11551	-0.83155	2.85951	-0.77870	-0.82485	-1.49604	1.98180	-0.91112	
Н	2.58560	0.11608	0.83128	2.57103	0.62188	-0.00125	-2.24535	1.45182	0.45998	
		aTS1			aTS1			rTS1		
С	2.21861	-0.54656	-0.11341	2.29274	-0.62278	0.00040	2.99762	1.10135	0.00003	
Н	3.19350	-0.07062	-0.19589	2.92436	-0.53246	-0.88590	2.34564	0.07883	-0.00006	
Н	2.17132	-1.34635	-0.86247	1.93879	-1.66977	-0.00025	3.59320	1.06224	-0.90581	
Н	1.57919	0.82569	-0.18480	1.64559	0.74645	0.00027	2.28894	1.92395	0.00036	
Н	2.17425	-1.02635	0.88591	2.92325	-0.53312	0.88756	3.59360	1.06183	0.90558	
Zr	-0.05501	-0.15141	0.05704	-0.06963	-0.12192	-0.00024	-0.44669	-0.39624	0.00003	
0	0.60125	1.54411	-0.02329	0.71375	1.53714	0.00015	1.47213	-0.89509	-0.00011	
Ν	-2.39815	-0.14785	-0.10242	-2.50134	-0.18704	0.00038	-2.30016	1.14744	-0.00005	
Η	-2.67681	0.51962	-0.82421	-2.93698	-0.59605	0.82410	-2.89331	1.09574	0.82670	
Η	-2.81772	-1.04862	-0.32208	-2.72901	0.80726	0.00022	-2.89322	1.09574	-0.82687	
Н	-2.75806	0.16455	0.80563	-2.93770	-0.59656	-0.82270	-1.82890	2.05188	-0.00002	
	[2+2	2] Intermed	liate	[2+2	2] Intermed	liate	Radi	cal Interme	ediate	
С	-1.98077	-1.05825	-0.00041	0.77533	-1.98090	0.00003	-4.63876	0.07948	0.00225	
Н	-2.00856	-2.14944	-0.00011	1.42214	-2.08284	0.88578	-2.29879	-0.12715	-0.00326	
Н	-2.51909	-0.70151	-0.89073	1.42287	-2.08403	-0.88499	-4.67583	-0.10172	1.06192	
Н	-0.56887	2.76517	-0.00105	-3.04904	0.53584	0.00264	-4.84182	-0.71991	-0.68797	
Н	-2.51701	-0.70125	0.89118	0.09500	-2.83669	0.00035	-4.43145	1.06874	-0.36649	
Zr	-0.03799	-0.02396	0.00018	-0.19712	0.05583	-0.00007	0.59045	-0.01414	-0.00044	
0	-0.22370	1.87282	-0.00011	-2.09825	0.44166	-0.00024	-1.33916	-0.08861	-0.00216	
Ν	2.17776	-0.67064	-0.00025	1.91574	1.20741	0.00024	3.01110	0.06452	0.00164	

Table S9. Cartesian coordinates of the MN15/TZ optimal structures without symmetry restrictions for the NH₃ZrO + CH₄ \rightarrow NH₃Zr+ CH₃OH reaction.

Н	2.59724	-0.26210	0.84361	1.80156	2.21785	-0.00230	3.34672	0.69012	0.73309
Н	2.36904	-1.67028	-0.00117	2.45830	0.96051	0.82606	3.39467	-0.86495	0.16899
Η	2.59682	-0.26072	-0.84366	2.45797	0.95659	-0.82466	3.35683	0.40091	-0.89634
		TS2			TS2			TS2	
Zr	0.26475	0.04716	0.03739	0.26214	0.02028	0.01516	0.21923	-0.10723	0.05024
0	-1.56936	-0.86791	0.08068	-1.57560	-0.87848	0.09531	-1.83182	-0.75388	0.01996
С	-2.49309	0.61914	-0.06972	-2.51462	0.68816	-0.03484	-2.07302	0.91697	-0.04058
Н	-2.27467	1.16997	-0.97750	-2.11494	1.38496	-0.76025	-1.17799	1.59209	-0.07437
Н	-2.33082	1.18784	0.83814	-2.53033	1.04371	0.98414	-2.63262	1.06952	0.87117
Н	-3.44438	0.10511	-0.08554	-3.41249	0.18084	-0.35489	-2.65744	1.03897	-0.94417
Н	-1.83574	-1.44202	-0.65267	-1.85077	-1.44507	-0.64368	-2.15732	-1.22144	-0.77149
Ν	2.57840	0.04513	-0.07725	2.60720	0.10334	-0.03455	2.59093	0.21323	-0.09092
Н	3.04007	0.94772	-0.19380	3.03914	0.63688	0.72018	2.93240	0.73057	0.71609
Н	2.92676	-0.39872	0.77702	2.86666	-0.88131	0.06709	3.10353	-0.66236	-0.16845
Н	2.79350	-0.54353	-0.88753	2.95911	0.44421	-0.93066	2.77629	0.77840	-0.91800
	NH	I₃ZrOHO	CH ₃	NH	I3ZrOHO	CH ₃	NH	I3ZrOHO	CH3
Zr	0.39657	0.02418	-0.07848	0.40355	0.05759	-0.01738	0.39251	-0.08241	-0.00343
0	-1.78277	0.43177	0.00871	-1.81310	0.39801	0.02284	-1.87064	-0.42868	-0.00227
С	-2.95692	-0.39696	0.08309	-2.97618	-0.44142	0.01108	-2.94456	0.51417	0.00180
Н	-3.22794	-0.56425	1.12281	-3.53486	-0.31303	0.93592	-3.57046	0.38594	-0.88071
Н	-2.70829	-1.34243	-0.38663	-2.62228	-1.46493	-0.05987	-2.47743	1.49624	-0.01818
Н	-3.76941	0.08262	-0.45790	-3.59774	-0.20523	-0.85059	-3.54168	0.41078	0.90703
Н	-1.87583	1.25190	0.53155	-2.03474	1.33855	0.09006	-2.18234	-1.34059	0.02586
Ν	2.67217	-0.14606	0.15974	2.69920	-0.20572	0.04997	2.76642	0.25510	-0.01025
Н	3.06472	0.75517	-0.12816	3.21330	0.59809	0.41092	3.30770	-0.50588	-0.41255
Н	2.84748	-0.30577	1.15581	3.01116	-1.05298	0.52547	3.08682	1.13732	-0.40115
Н	3.10499	-0.89448	-0.38475	2.89069	-0.29957	-0.95572	2.94427	0.27150	0.99597
		ZrNH ₃			ZrNH ₃			ZrNH ₃	
Zr	0.48071	0.00000	-0.00295	0.48365	0.00001	-0.00067	0.50919	0.00019	0.00017
Ν	-1.81780	0.00001	-0.01976	-1.82660	0.00003	-0.00545	-1.92559	0.00134	0.00121
Н	-2.29908	0.82642	-0.37611	-2.21695	0.82982	-0.45477	-2.28963	-0.80214	0.50754
Н	-2.29806	-0.82813	-0.37346	-2.21618	-0.83060	-0.45391	-2.31860	0.83662	0.42812