Electronic Supplementary Information

Embedding the Tetrahedral 3*d* Transition Metal TM₄ Clusters into the Cavity of Two-Dimensional Graphdiyne to Construct Highly Efficient and Nonprecious Electrocatalysts for Hydrogen Evolution Reaction

Ruiqi Ku¹, Guangtao Yu^{1,2*}, Jing Gao¹, Xuri Huang¹ and Wei Chen^{1,2*}

¹ Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China ² College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China

*To whom correspondence should be addressed. Email: yugt@jlu.edu.cn (G.Y.), w_chen@jlu.edu.cn (W.C.)

(I) The computational test on the effect of TM₄-concentration on the calculated free energy of H* (ΔG_{H^*})

We have performed a computational test to explore the effect of TM₄-concentration on the computed ΔG_{H^*} value by sampling Co₄@GDY system, where the supercell size of GDY is enlarged from the original 1×1 into 2×2, as illustrated Figure S1. Based on the enlarged structural models with the lower metal loading, we have computed the ΔG_{H^*} values by considering all the possible adsorption sites. Table S1 collects the correlative computed results. It can be found that all the computed ΔG_{H^*} values based on 2×2 supercell model with lower metal loading can be very close to the corresponding those from the original 1×1 supercell size, with a negligible change in the range of 0.005~0.077 eV, reflecting that the obtained ΔG_{H^*} results based on 1×1 supercell size can be reasonable and reliable, and 1×1 supercell model can be used to simulate the realistic situation with the lower metal loading.

Figure S1. The top view of structural model for $Co_4@GDY$ system with 2×2 supercell size of GDY.

Adsorption sites –	$\Delta G_{\mathrm{H}^{*}}\left(\mathrm{eV} ight)$	
	1×1	2×2
T _{C1}	1.081	1.057
T _{C2}	-0.286	-0.281
T _{C3}	0.055	0.011
T _{C4}	-0.400	-0.448
T _{C5}	-0.360	-0.283
T _{C6}	0.943	0.994
T _{Co1}	-0.016	0.014
B _{Co1-Co2}	0.027	0.018
H _{Co2-Co2} '-Co2''	-0.112	-0.096

Table S1. The comparison between the computed ΔG_{H^*} values on Co₄@GDY by using 1×1 and 2×2 supercell size of GDY.

(II) Diffusion barrier of TM1 atom into the neighboring C ring for Fe₄@GDY and Co₄@GDY systems

Figure S2. Atomic configurations for the diffusion of TM1 atom into the neighboring C ring for the representative $TM_4@GDY$ system for TM = Fe (a) and Co (b), respectively, including the initial state (IS), transition state (TS) and final state (FS). The energy is given with respect to IS.