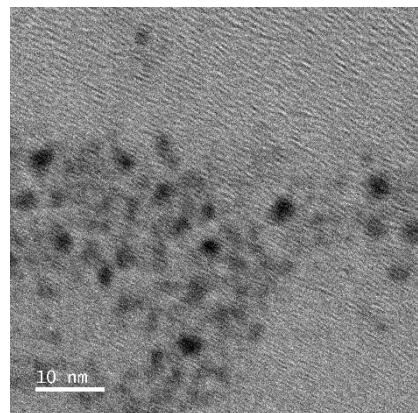
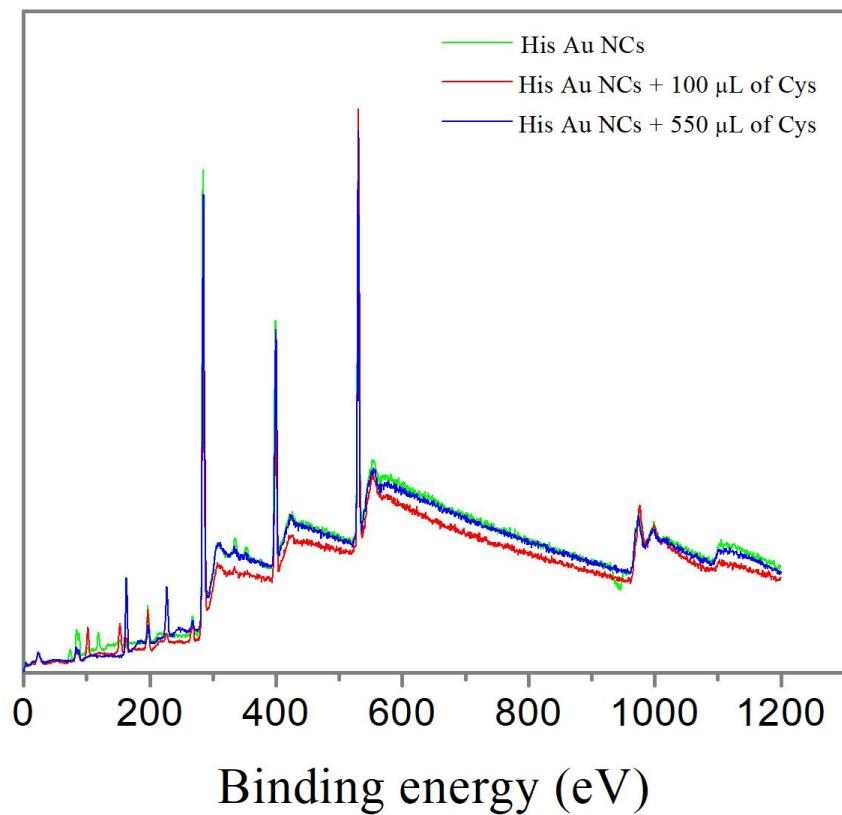

Tailoring the luminescence of atomic clusters via Ligand Exchange Reaction Mediated post synthetic modification

*Srestha Basu,^{a\$} Chirantan Gayen ^{a\$} Santanu Dolai^a and
Anumita Paul^{a*}*


^a Department of Chemistry, Indian Institute of Technology Guwahati,
Guwahati 781039, India

E-mail: anumita@iitg.ac.in


Electronic Supplementary Information

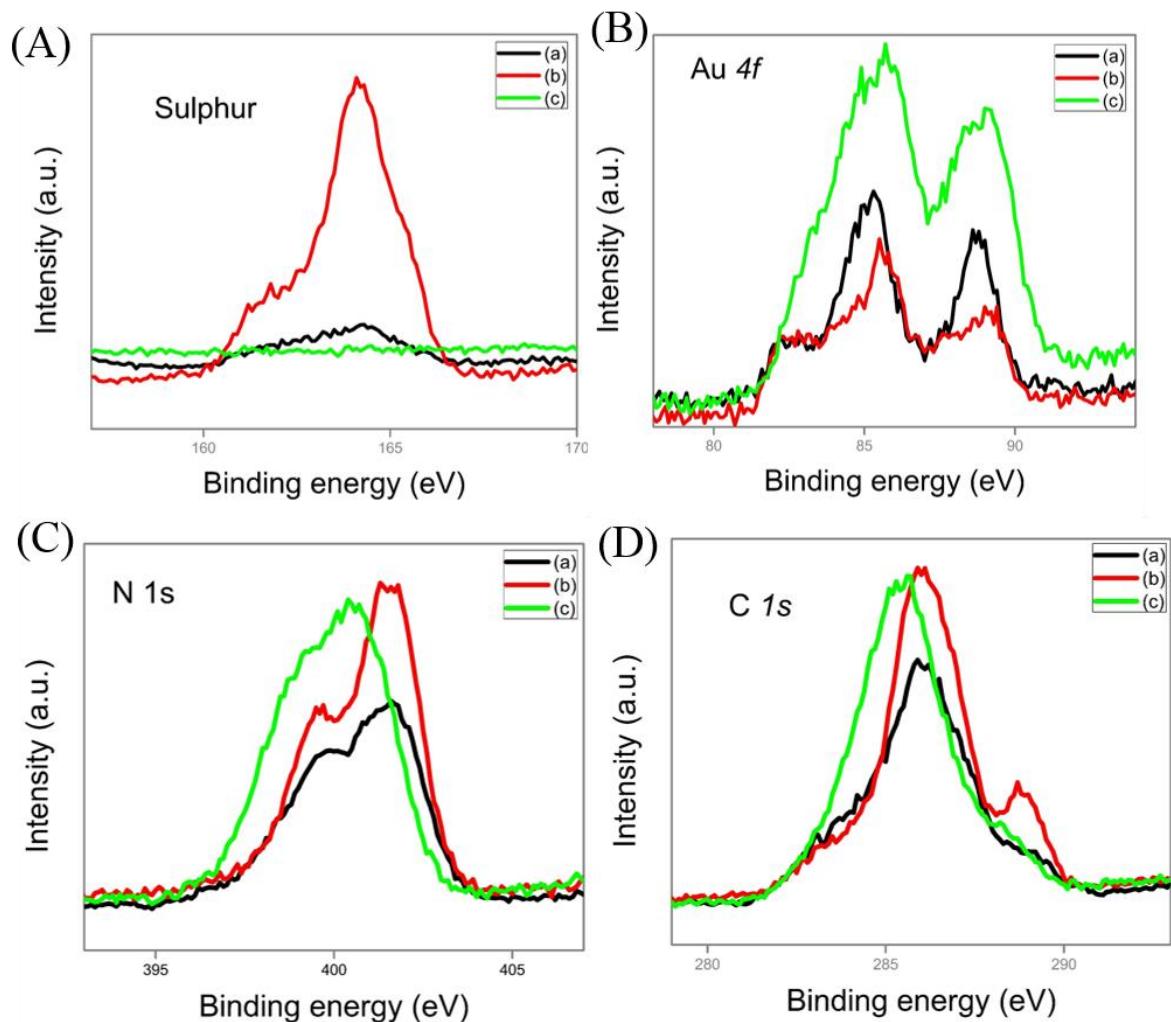

Fig. S1 (A) Emission spectrum of His Au NCs. Excitation wavelength was set at 370 nm (B) Excitation spectrum of His Au NCs. Emission wavelength was set at 475 nm (C) UV-visible absorbance spectrum of His Au NCs.

Fig. S2 TEM image of His Au NCs.

Fig. S3 Survey spectra of His Au NCs, His Au NCs + 100 μ L cysteine and His Au NCs + 550 μ L cysteine

Fig. S4 XPS spectrum of (A) sulphur 2p, (B) Au 4f, (C) N 1s and (D) C 1s. (a) Black lines denote His Au NCs following addition of 100 μ L cysteine, green lines denote only His Au NCs and red lines denote His Au NCs following addition of 500 μ L cysteine.

Table S1: pH variation of dispersions of His Au NCs upon addition of varying amounts of cysteine.

Solution	pH of the solution
His Au NCs	6.85
His Au NCs +10 μ L of 100 mM cysteine	6.86
His Au NCs +20 μ L of 100 mM cysteine	6.85
His Au NCs +30 μ L of 100 mM cysteine	6.80
His Au NCs +40 μ L of 100 mM cysteine	6.78
His Au NCs +50 μ L of 100 mM cysteine	6.76
His Au NCs +60 μ L of 100 mM cysteine	6.80
His Au NCs +70 μ L of 100 mM cysteine	6.79
His Au NCs +80 μ L of 100 mM cysteine	6.79
His Au NCs +90 μ L of 100 mM cysteine	6.78
His Au NCs +100 μ L of 100 mM cysteine	6.82
His Au NCs +110 μ L of 100 mM cysteine	6.75
His Au NCs +120 μ L of 100 mM cysteine	6.76
His Au NCs +130 μ L of 100 mM cysteine	6.76
His Au NCs +140 μ L of 100 mM cysteine	6.76
His Au NCs +150 μ L of 100 mM cysteine	6.77
His Au NCs +200 μ L of 100 mM cysteine	6.8
His Au NCs +400 μ L of 100 mM cysteine	6.79

Table S2: Variation in luminescence lifetime of His Au NCs upon addition of cysteine

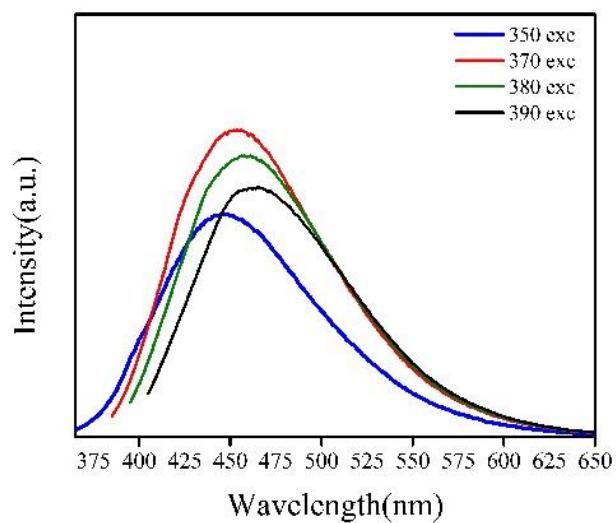
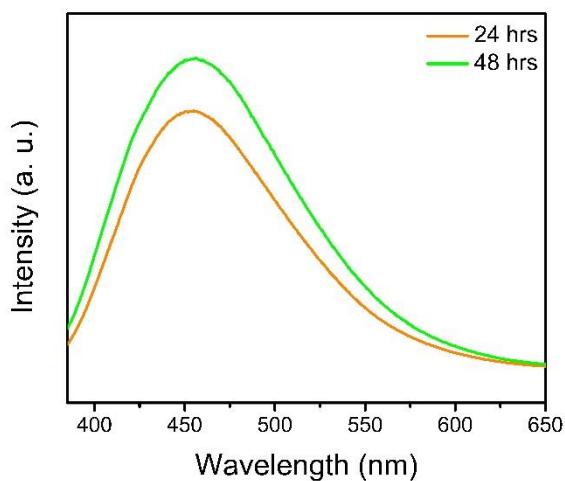

Sample	T ₁		T ₂		T ₃		Average lifetime (ns)
	Lifetime (ns)	Contribution (%)	Lifetime (ns)	Contribution (%)	Lifetime (ns)	Contribution (%)	
His Au NCs	1.24	37.45	5.45	53.99	0.15	8.56	4.86
His Au NCs +40 μ L of 100 mM cysteine	0.97	24.65	5.37	65.81	0.04	9.55	5.08
His Au NCs +440 μ L of 100 mM cysteine	1.48	30.64	6.54	62.71	0.07	6.65	6.03

Table S3: Details of XPS analysis of His Au NCs and of that following addition of a cysteine


Element	BE@0 (width)	%	BE@100 (width)	%	BE@500 (width)	%	Peak assignment	Reference & notes
Au 4f _{5/2}	88 (0.9)	6	87.4 (0.9)	4	88 (1.9)	23	Au(0)	Nanoscale , 2015, 7, 16372-16380
	89.2 (1.6)	29	88.8 (1.1)	31	89.3 (1)	11	Au(δ+)	Nanoscale , 2017, 9, 15033-15043
Au 4f _{7/2}	83.2 (1.5)	8	82.6 (1.4)	12	82.4 (1.0)	11	Au(0)	Nanoscale , 2018, 10, 3792-3798
	85.5 (2.5)	57	85.1 (1.6)	53	84.6 (2.5)	38	Au(δ+)	J. Am. Chem. Soc. , 2005, 127, 5261-5270
					85.6 (1.8)	17		Nanoscale , 2012, 4, 7727-7734
Sulphur 2p _{3/2} - 2p _{1/2} =1.18eV, (2:1)	-	-	161.9 (1.8)	27	161.5 (1.2)	12	Au-SR	Journal of Nanobiotechnology volume 9, article number: 26 (2011)
					162.8 (1.2)	14	Au-SR	Nanoscale , 2014, 6, 8091-8099
			164.3 (2.1)	73	164.2 (1.3)	58	RS-H	Langmuir 2004, 20, 10223-10230
					165.5 (1)	16		Nanoscale , 2012, 4, 7727-7734
								Colloids and Surfaces A: Physicochem. Eng. Aspects 2000, 175, 121 - 128
								S _{3/2} and S _{5/2} peaks: unresolved in fig3 due to poor signal to noise ratio. Incomplete resolution in fig 3F due to close overlapping shoulder peaks

Nitrogen 1s			396.7 (1.3)	3				<p>J. Phys. Chem. B, 2005, 109, 884-891</p> <p>J. Phys. Chem. B 2008, 112, 13655–13660</p> <p>Langmuir 2010, 26(11), 8606–8613</p> <p>Nanoscale, 2012, 4, 7727–7734</p> <p>Langmuir 2004, 20, 10223-10230</p> <p>J. Phys. Chem. C 2014, 118, 10481–10487</p> <p>Deconvolution and assignment is complicated by zwitterionic and protonated forms of histidine & cysteine</p>
	398.9 (2.1)	45	398.1 (1.1)	7			imine (- <u>N</u> =C-NH)	
			399.5 (1.6)	32	399.5 (1.6)	33	-NH ₂ (cys)	
	400.9 (1.9)	55					amine(N=C- <u>NH</u> -) -NH ₂ (his)	
Carbon 1s			283.1 (1.5)	8			<u>C</u> -SAu (cys)	<p>J. Phys. Chem. B, 2005, 109, 884-891</p> <p>J. Phys. Chem. B 2008, 112, 13655–13660</p> <p>Langmuir 2004, 20, 10223-10230</p> <p>Applied Surface Science 2018, 435, 870–879</p>
	285.5 (2.5)	92	285.5 (2.4)	52	284.2 (2.4)	17	imidazole C, -CH ₂ - -C(NH ₂)HCOO ⁻	
			286 (1)	13	285.8 (1.2)	38	C-SH (cys)	
	288 (1.4)	8	287.2 (1.3)	17	286.9 (1.3)	30	-C-NH ₂ (cys)	
			288.9 (1.4)	10	288.8 (1.2)	15	<u>COO</u> ⁻	
							<u>COOH</u>	

Additional figures:

Fig. S5 Excitation dependent (as mentioned in figure legends) emission spectra of His Au NCs

Fig. S6 Emission spectra of His Au NCs recorded after 24 h and 48 h of preparation.