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SUPPLEMENTARY MATERIAL (1) FOR “A SIMPLE SCHEME FOR FINDING
MAGNETIC AROMATIC HYDROCARBON MOLECULES”

Usually first- and second-order Rayleigh-Schrédinger perturbation theory is used in con-
densed matter starting from the large interaction limit where the kinetic energy is used as
a perturbation[1]. In this appendix we show how to treat the electronic repulsion as a weak
perturbation (the general formalism is exposed in refs. 2 and 3).

On the main text we use the Hubbard model[4] to describe the electronic interactions in
conjugated systems. The model Hamiltonian contains a non-interacting part Hy and a term

that incorporates the on-site electron-electron interaction H;:
H= Ho + H 1- (1>
The non-interacting part is a tight-binding Hamiltonian,
Hy=—tY (éjgajg n éjgaw> , 2)
%,7;0
that describe the kinetic energy with a constant hopping ¢ between sites ¢ and j. The

interacting part of H is
N
= U3 (s = 1/2) (s, — 1/2), Q
i=1

where U is the on-site Coulomb interaction and N denote the number of sites. N, is the
number of electrons with spin ¢ in the system.
Let us call ¢,, the operators that diagonalize H,. The original annihilation site operators

are written as a linear combination of these operators as
Cig = E 5p’a,icp’o- (4)
p/

In the limit of weakly correlated electrons we treat the interaction as a small perturbation
in the total energy. The energy of a state can be written as E = E© 4+ a+A234+0()\3) where
A = U/t. The energy for the unperturbed system is simply the energy of a tight-binding
model

B = (n®|Hyln), (5)

where

n@ = J[  é.él0 (6)
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is a state of the unperturbed system, which can easily be obtained once H, is exactly
diagonalizable. S, , is a set of eigenstates of H, labelled by po (o0 =1,J) with energy ¢,, .

The first-order Rayleigh-Schrodinger perturbation teory correction for the energy is
A = (nO]H|n©). (7)

The Rayleigh-Schrodinger second-order perturbation term at non-degenerate state [n(®) is

(0)| HA |k(0)> |2
AP = E |<n ! (8)
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where [k(©) # [n®) is a state of the unperturbed system. The diagonal part of H,, propor-
tional to the constant term —U/2N, does not introduce any contribution to the second-order
correction for the energy. In this expression only the correlation term Unjsn, , not diagonal
in the k basis, contributes to the energy correction at second-order.

We write the non-interacting state [n(®) or [k(?)) as the direct product of up and down

states
@) = () (), (9)
KOy = [K7) £ (10)

For the second-order correction Eq. (8) we need to compute

N
(KO [n@) = KUY igvgy |0 @) (11)
=1
N
= Uy (K [n®)
=1
Using Eqgs. (9) and (10)
N
5 0
(KON} = U5 R ol (12)
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Evaluating one of these mean values for the generic spin variable o we have

kPNiolnd) = (O TT et IT o
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Using Eq. (4) we write this expression as

(F200e?) = OF 1] ue 2 rmbiotiotin 11 cool) 13)
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For this mean value to be different from zero in any case p’ must belong to S,, and there are
two possibilities for p:

e p =p' implying that Sy, = S, so <k§0)| = <n£,0)|. The Eq. (14) then resumes to

Y Bpuil® = (0@ In®) = () (14)

p=p'E€Sn.o

and the energy of the state \k§0)> is E,ﬁ?} =B = <n§0)|flo|nf,0)>.
e If p # p/, then p must not belong to S,,. Then Eq. (14) becomes
(kD6 InS) = Byyiby, (15)

and Sk, must contains all the elements of S, , that include p and exclude p’. The

energy of the state |k[(,0)> is E,Eg) =B + €po — Eplo-

The condition |k©) # [n(®) can be written as ]k%o))|kio)> # \n%0)>|ni0)>. This last condi-

tion can be satisfied in three cases
B # ) A LR # 10
I k) # n”) A ED) = )
mr . %) = 1) A &) # 10”)
Taking into considerations these possibilities Eq. (8) becomes
NB=U*(Bo + Br + BY) (16)

where [y is the term obtained when |k§0)> + |n%0)> and |k:io)) # |ni0))
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B+ is the term obtained when |k§0)> # |n§0)> and ]ki0)> = ]ni0)>
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B, is completely analogous to ;.

B 3B ()
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The last fourth equations give the second-order perturbation correction to the energy of the
state [n(®) due to H;.
A Maxima [5] script to perform these calculations is found in supplementary material

(2), the executable script is made available on requesting to the authors.
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