
SUPPLEMENTARY MATERIAL (1) FOR “A SIMPLE SCHEME FOR FINDING

MAGNETIC AROMATIC HYDROCARBON MOLECULES”

Usually first- and second-order Rayleigh-Schrödinger perturbation theory is used in con-

densed matter starting from the large interaction limit where the kinetic energy is used as

a perturbation[1]. In this appendix we show how to treat the electronic repulsion as a weak

perturbation (the general formalism is exposed in refs. 2 and 3).

On the main text we use the Hubbard model[4] to describe the electronic interactions in

conjugated systems. The model Hamiltonian contains a non-interacting part Ĥ0 and a term

that incorporates the on-site electron-electron interaction Ĥ1:

Ĥ = Ĥ0 + Ĥ1. (1)

The non-interacting part is a tight-binding Hamiltonian,

Ĥ0 = −t
∑
i,j;σ

(
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

)
, (2)

that describe the kinetic energy with a constant hopping t between sites i and j. The

interacting part of Ĥ is

Ĥ1 = U
N∑
i=1

(n̂i↑ − 1/2)(n̂i↓ − 1/2), (3)

where U is the on-site Coulomb interaction and N denote the number of sites. Ne,σ is the

number of electrons with spin σ in the system.

Let us call ĉpσ the operators that diagonalize Ĥ0. The original annihilation site operators

are written as a linear combination of these operators as

ĉiσ =
∑
p′

βp′σ,iĉp′σ. (4)

In the limit of weakly correlated electrons we treat the interaction as a small perturbation

in the total energy. The energy of a state can be written as E = E(0)+λα+λ2β+O(λ3) where

λ = U/t. The energy for the unperturbed system is simply the energy of a tight-binding

model

E(0) = 〈n(0)|Ĥ0|n(0)〉, (5)

where

|n(0)〉 =
∏

p↑∈Sn,↑,p↓∈Sn,↓

ĉ†p↓ ĉ
†
p↑
|0〉 (6)
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is a state of the unperturbed system, which can easily be obtained once Ĥ0 is exactly

diagonalizable. Sn,σ is a set of eigenstates of Ĥ0 labelled by pσ (σ =↑, ↓) with energy εpσ .

The first-order Rayleigh-Schrödinger perturbation teory correction for the energy is

λα = 〈n(0)|Ĥ1|n(0)〉. (7)

The Rayleigh-Schrödinger second-order perturbation term at non-degenerate state |n(0)〉 is

λ2β =
∑
k 6=n

|〈n(0)|Ĥ1|k(0)〉|2

E
(0)
n − E(0)

k

, (8)

where |k(0)〉 6= |n(0)〉 is a state of the unperturbed system. The diagonal part of Ĥ1, propor-

tional to the constant term −U/2N , does not introduce any contribution to the second-order

correction for the energy. In this expression only the correlation term Un̂i↑n̂i↓, not diagonal

in the k basis, contributes to the energy correction at second-order.

We write the non-interacting state |n(0)〉 or |k(0)〉 as the direct product of up and down

states

|n(0)〉 = |n(0)
↑ 〉|n

(0)
↓ 〉, (9)

|k(0)〉 = |k(0)↑ 〉|k
(0)
↓ 〉. (10)

For the second-order correction Eq. (8) we need to compute

〈k(0)|Ĥ1|n(0)〉 = 〈k(0)|U
N∑
i=1

n̂i↑n̂i↓|n(0)〉 (11)

= U

N∑
i=1

〈k(0)|n̂i↑n̂i↓|n(0)〉

Using Eqs. (9) and (10)

〈k(0)|Ĥ1|n(0)〉 = U
N∑
i=1

〈k(0)↓ |〈k
(0)
↑ |n̂i↑n̂i↓|n

(0)
↑ 〉|n

(0)
↓ 〉 (12)

= U

N∑
i=1

〈k(0)↑ |n̂i↑|n
(0)
↑ 〉〈k

(0)
↓ |n̂i↓|n

(0)
↓ 〉

Evaluating one of these mean values for the generic spin variable σ we have

〈k(0)σ |n̂σ|n(0)
σ 〉 = (〈0|

∏
q∈Sk,σ

ĉqσ)ĉ†iσ ĉiσ(
∏

q′∈Sn,σ

ĉ†q′σ|0〉).

2



Using Eq. (4) we write this expression as

〈k(0)σ |n̂|n(0)
σ 〉 = 〈0|

∏
q∈Sk,σ

ĉqσ
∑
pp′

βp′σiβ
∗
pσiĉ

†
pσ ĉp′σ

∏
q′∈Sn,σ

ĉ†q′σ|0〉 (13)

=
∑
pp′

βp′σiβ
∗
pσi〈0|

∏
q∈Sk,σ

ĉqσ ĉ
†
pσ ĉp′σ

∏
q′∈Sn,σ

ĉ†q′σ|0〉.

For this mean value to be different from zero in any case p′ must belong to Sn and there are

two possibilities for p:

• p = p′ implying that Sk,σ = Sn,σ so 〈k(0)σ | = 〈n(0)
σ |. The Eq. (14) then resumes to∑

p=p′∈Sn,σ

|βpσi|2 = 〈n(0)
σ |n̂iσ|n(0)

σ 〉 = 〈n̂iσ〉 (14)

and the energy of the state |k(0)σ 〉 is E
(0)
kσ = E

(0)
nσ = 〈n(0)

σ |Ĥ0|n(0)
σ 〉.

• If p 6= p′, then p must not belong to Snσ. Then Eq. (14) becomes

〈k(0)σ |n̂σ|n(0)
σ 〉 = βp′σiβ

∗
pσi (15)

and Sk,σ must contains all the elements of Sn,σ that include p and exclude p′. The

energy of the state |k(0)σ 〉 is E
(0)
kσ = E

(0)
nσ + εpσ − εp′σ.

The condition |k(0)〉 6= |n(0)〉 can be written as |k(0)↑ 〉|k
(0)
↓ 〉 6= |n

(0)
↑ 〉|n

(0)
↓ 〉. This last condi-

tion can be satisfied in three cases

I . |k(0)↑ 〉 6= |n
(0)
↑ 〉 ∧ |k

(0)
↓ 〉 6= |n

(0)
↓ 〉

II . |k(0)↑ 〉 6= |n
(0)
↑ 〉 ∧ |k

(0)
↓ 〉 = |n(0)

↓ 〉

III . |k(0)↑ 〉 = |n(0)
↑ 〉 ∧ |k

(0)
↓ 〉 6= |n

(0)
↓ 〉

Taking into considerations these possibilities Eq. (8) becomes

λ2β = U2(β0 + β↑ + β↓) (16)

where β0 is the term obtained when |k(0)↑ 〉 6= |n
(0)
↑ 〉 and |k(0)↓ 〉 6= |n

(0)
↓ 〉

β0 =
∑
i,j

∑
p′↑∈Sn↑,p

′
↓∈Sn↓

p↑ /∈Sn↑,p↓ /∈Sn↓

β∗p′↑,jβp↑,jβ
∗
p′↓,jβp↓,jβ

∗
p′↑,iβp↑,iβ

∗
p′↓,iβp↓,i

εp↑ + εp↓ − εp′↑ − εp′↓
(17)

=
∑

p′↑∈Sn↑,p
′
↓∈Sn↓

p↑ /∈Sn↑,p↓ /∈Sn↓

[∑
j β
∗
p′j↑βpj↑β

∗
p′j↓βpj↓

]2
εp↑ + εp↓ − εp′↑ − εp′↓

.
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β↑ is the term obtained when |k(0)↑ 〉 6= |n
(0)
↑ 〉 and |k(0)↓ 〉 = |n(0)

↓ 〉

β↑ =
∑
i,j

∑
p′↑∈Sn↑
p↑ /∈Sn↑

β∗p′↑,jβp↑,jβ
∗
p′↑,iβp↑,i〈n̂j↓〉〈n̂i↓〉
εp↑ − εp′↑

(18)

=
∑
p′↑∈Sn↑
p↑ /∈Sn↑

[
∑

j β
∗
p′↑,jβp↑,j〈n̂j↓〉]2

εp↑ − εp′↑

β↓ is completely analogous to β↑.

β↓ =
∑
p′↓∈Sn↓
p↓ /∈Sn↓

[
∑

j β
∗
p′↓,jβp↓,j〈n̂j↓〉]2

εp↓ − εp′↓
(19)

The last fourth equations give the second-order perturbation correction to the energy of the

state |n(0)〉 due to Ĥ1.

A Maxima [5] script to perform these calculations is found in supplementary material

(2), the executable script is made available on requesting to the authors.
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