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1 Molecular structure

The geometries of [Cu(dmphen)2]
+ in the ground and S1 excited states were fully optimized

in vacuum with DFT at the same level of theory as in the QM/MM BOMD and NEB calcu-

lations presented in the main text. The minimum energy structure is found by employing the

ASE implementation of a quasi-Newton local optimization algorithm using GPAW-computed

forces. The geometry is converged when the magnitude of the maximum force of any atom

is less than 0.02 eV/Å. We find that the ground and excited states have approximate D2 and

C2 symmetry, respectively. The cartesian coordinates of the optimized S0 and S1 geometries

are reported in Table S3, section 8, while Table S1 reports selected structural parameters

compared to the averages over equilibrated frames of the QM/MM trajectories.
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Table S1: Selected structural parameters of the optimized gas-phase geometry of
[Cu(dmphen)2]

+ in the S0 and S1 states, and corresponding average values from the
QM/MM BOMD simulations at 300 K with their standard deviations. For the excited-
state QM/MM averages, only equilibrated frames after 3 ps of the trajectory propa-
gation were considered.

S0 S1

Vacuum QM/MM Vacuum QM/MM

bonds (Å)

<Cu-N> 2.07 2.08±0.03 2.02 2.05±0.03

angles (deg.)

<N-Cu-N> 82.1 81.9±1.8 84.2 83.2±1.6

Θ (flattening) 86.9 88.6±6.8 63.8
66.2±5.5(left)

113.4±5.4(right)a

Θ′ (rocking)b 89.3 87.9±6.1 89.5 88.9±7.7

a Left and right configurations correspond to a left- and right-handed twist of the ligands, respec-
tively (see Figure S7). b The rocking angle is defined as the angle between the bisector of a N-Cu-N
angle in one phenanthroline ligand and the normal to the N-Cu-N plane on the other ligand.S1

Apart from the flattening distortion discussed in the main text, other significant struc-

tural changes in the S1 state are a contraction of the Cu-N bonds and a widening of the N-

Cu-N angles. These modifications are due to the removal of an electron from metal-centered

d orbitals with some Cu-N antibonding character (see next section), and are consistent with

experimental determinations.S2,S3 A transient X-ray absorption study by Chen et al.S4 de-

duced a significant rocking distortion in the excited state in solution following ligation of a

solvent molecule to Cu to form a pentacoordinated exciplex. In the present study, exciplex

formation is not observed. Accordingly, we find only a small rocking angle both in vacuum

and in solution (see Table S1). This confirms what is observed by Penfold et al.S2 in a recent

combined X-ray absorption and DFT investigation.

2 Properties of the electronic excitation

The S0 → S1 vertical excitation energy computed using BLYP and the ∆SCF method in

GPAW (see Computational Methods section in the main text) at the ground-state optimized
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geometry of [Cu(dmphen)2]
+ in vacuum is 2.35 eV. This value differs from the position of the

S0 → S1 peak in the experimental absorption spectrum in solution, 2.25-2.29 eV,S2,S5,S6 by

less than 4%. In comparison, the S0 → S1 transition energy computed with linear response

time-dependent (TD) DFT using the B3LYP hybrid functional and all-electron atomic orbital

basis sets by Capano et al.S7 is 2.44 eV.

dyz (HOMO-1)

dxz (HOMO)

1π* (LUMO)

2π* (LUMO+1)

Figure S1: Molecular orbitals involved in the S0 → S1 transition at the GPAW gas-phase optimized

geometry of [Cu(dmphen)2]
+ in the ground state. Isovalues are at 0.1

√
e−/Å

3
.

Figure S1 shows the molecular orbitals of [Cu(dmphen)2]
+ in the ground state involved in

the electronic transition to S1. HOMO-1 and HOMO have character of d metal orbitals and

are found to be almost degenerate at the gas-phase S0 optimized geometry, while LUMO and

LUMO+1 are ligand-centered π∗ orbitals and they too are almost degenerate. Therefore,

the S0 → S1 excitation at the Franck-Condon (FC) geometry occurs from both HOMO-1

and HOMO to LUMO and LUMO+1, and displaces electron density from the metal to both

phenanthroline ligands. The net charge transfer is ∼0.5 e-, as evaluated from the integral of

the positive or negative parts of the electron density difference (S1 − S0, see Figure S2). As
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Figure S2: Negative (Left) and positive (Right) isovalues of the difference between the electron
density of [Cu(dmphen)2]

+ (S1 − S0) at the GPAW gas-phase optimized geometry in the ground

state. Isovalues are at 0.01 e−/Å
3
.

the ligands flatten in the excited state, the orbital degeneracies are lifted and S1 becomes

characterized by a single transition, dxz → 2π∗ or dyz → 1π∗ depending on whether the

twist of the ligands is left- or right-handed. A similar adiabatic picture of the lowest energy

MLCT excitation has previously been obtained from B3LYP TDDFT calculations:S7–S10

In the perpendicular geometry, the S1 state is characterized by a combination of d → π∗

transitions, while at the excited-state minimum energy structure the transition occurs from

a single d metal orbital to a single π∗ ligand orbital. The major difference between the

character of the S1 state obtained from ∆SCF with BLYP and from TDDFT with B3LYP,

is that for the former at the excited-state minimum the MLCT electron is delocalized on

both phenanthroline ligandsS8 while for the latter the photoexcited electron is localized on

a single ligand.

To explore to which extent the character of the S1 state is preserved in the nonequilibrium

excited-state QM/MM BOMD simulations in acetonitrile, Figure S3 shows the evolution

of the energy gap between the HOMO and LUMO (ground-state LUMO and LUMO+1)

orbitals during the dynamics of a single QM/MM trajectory. At the beginning, the two

orbitals are essentially degenerate and have both occupation numbers of ∼0.5, but after a

fast relaxation time of around 400 fs, which parallels the pseudo Jahn-Teller (PJT) relaxation

of the complex, the HOMO-LUMO gap fluctuates around an average of ∼0.1 eV, preventing

mixing of the HOMO with higher lying orbitals. This suggests that, after flattening, the
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Figure S3: Time evolution of the HOMO-LUMO energy gap along a QM/MM trajectory of
[Cu(dmphen)2]

+ in the S1 state in acetonitrile. Above and below the plot, the HOMO orbital

is depicted at the 0.01 e−/Å
3

isosurface at various times, as indicated by the arrows.

excited state to a large extent preserves a character of dxz → 2π∗ transition. A further

indication of this is given by plots of an isosurface of the HOMO orbital at different times

in the dynamics, also shown in Figure S3. The HOMO has a character of 2π∗ orbital and

is for most of the time delocalized over the two ligands. Localization of the π∗ orbital on

one ligand can occur sporadically, as for example at around 2.2 ps in the selected trajectory.

Localization of the photoexcited electron for some instantaneous solvent configurations has
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been observed in QM/MM simulations of the MLCT excited state of other transition metal

compounds.S11

Raman spectroscopic studies in solutionS12 suggest that in the lowest 1MLCT excited

state (S1) of [Cu(dmphen)2]
+ the promoted electron localizes on one phenanthroline lig-

and. To asses the extent to which the solvation structure is modified by the localiza-

tion of the charge in the excited state, we perform additional classical MD simulations of

[Cu(dmphen)2]
+ in acetonitrile, describing both solute and solvent at MM level. Acetonitrile

molecules are modeled with the same classical force field as used in the QM/MM BOMD

simulations (see section 6 below), while for the Coulombic interactions involving atoms of

the solute we employ partial charges obtained from a Hirshfeld analysisS13 of the GPAW-

calculated charge density of [Cu(dmphen)2]
+ in the ground or excited state in vacuum. The

computed Hirshfeld partial charges, qgsi and qesi , are reported in Table S3, section 8. As

expected, the negative charge transferred from the metal in the excited state is distributed

uniformly among both ligands. Other nonbonded interactions are modeled with the Lennard-

Jones (LJ) potential using parameters for the complex from the OPLS 2005 force field.S14

For these simulations, we use the Desmond software package developed at D. E. Shaw Re-

search.S15 The complex is kept at the optimized ground- or excited-state gas-phase geometry

by applying harmonic positional restraints with force constant of 500 kcal/mol, and solvated

in a cubic box with 50 Å side length containing acetonitrile molecules. The propagation is

performed in the NVT ensemble using a Nosé-Hoover thermostat at 300 K, with a time step

of 2 fs for 500 ps, collecting frames each 500 fs. For the S1 state, we perform two types of

classical MD simulations, differing in the choice of partial charges for the ligands: (i) using

for the atoms of the ligands partial charges qesi as calculated from the Hirshfeld analysis of

the excited-state electron density and reported in Table S3 (charge delocalized uniformly on

both ligands), and (ii) using for the atoms of one ligand the partial charges of the ground

state (qgsj , where j is an index for the atoms of the first ligand) and for the atoms of the

other ligand partial charges obtained as qgsk + 2(qesk − q
gs
k ), where k is an index for the atoms

S-7



of the second ligand (transferred charge localized on one ligand).
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Figure S4: RDFs between Cu and the sites of the acetonitrile molecules as obtained from MM
MD simulations of [Cu(dmphen)2]

+ in the ground state and in the excited state with different
distributions of the transferred charge among the two phenanthroline ligands. The RDFs from the
MM trajectories appear more structured than those computed from the QM/MM trajectories (see
Figure 3 in the main text), a feature that can be in part ascribed to the rigidity of the solute in
the MM MD simulations.S16

Figure S4 shows the Cu-solvent pairwise radial distribution functions (RDFs) obtained

from the frames collected from the MM MD trajectories by sampling the atom pairs in

0.1 Å radial bins. There are no sizable differences between the RDFs for the two differ-

ent types of localization of the extra negative charge on the ligands in the excited state

of [Cu(dmphen)2]
+, apart from noise due to the limited sampling statistics. Thus, the re-

sponse of the solvent to MLCT excitation of the complex is the same whether the charge is

transferred to one or both of the ligands.

3 Details of the fittings

The exponential functions fitted to the time evolution of the average deviation from 90◦ of the

flattening angle Θ, as extracted from the excited-state QM/MM and gas-phase BOMD sim-

ulations, and to the instantaneous cumulative coordination number obtained by integrating
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the Cu-N(solvent) RDFs up to r(Cu− N) = 4.75 Å, have the general form:

f(t) =
∑
i

Aie
−t/τi +B (1)

Table S2 reports the parameters for each of the best fits presented in the main text.

Table S2: Parameters of the exponential fits shown in Figures 2-4 of the main text. Θ
is the dihedral angle defined in Figure 1, < · · · > indicates averages over trajectories,
and cn is the cumulative coordination number of the distances between Cu and the
N sites of the acetonitrile molecules at r(Cu − N) = 4.75 Å obtained from the S1

QM/MM trajectories.

< |90◦ −Θ| > solution

Monoexponential Biexponential cn < |90◦ −Θ| > vacuum

A1 -12.6±0.4 deg. -11.3±0.6 deg. -0.77±0.01 -16±2 deg.

A2 - -5.3±0.4 deg. - -

τ1 300±14 fs 110±12 fs 1060±49 fs 90±16 fs

τ2 - 1200±190 fs - -

B 21.8±0.1 deg. 22.7±0.2 deg. 1.29±0.01 20.0±0.2 deg.

R2 0.78 0.86 0.87 0.19

Figure S5 shows the residuals of a fit of the instantaneous deviation from 90◦ of the flat-

tening angle Θ averaged over the excited-state QM/MM trajectories with a monoexponential

and a biexponential function, respectively. The oscillations with a period of ∼140 fs are due

to a vibrational mode with character of twisting of the ligands, which is activated at the

beginning of the excited-state dynamics and involves a bending of the Θ angle, as confirmed

by a normal mode analysis at the gas-phase S1 optimized geometry. For a better comparison

of the quality of the monoexponential and biexponential fits, the residuals are averaged over

bins of 140 fs and plotted in Figure S6.
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Figure S5: Evolution of the average flattening angle Θ (see Figure 1 in the main text for a definition
of Θ) from the nonequilibrium excited-state QM/MM simulations of [Cu(dmphen)2]

+ in acetonitrile
(black curve), together with monoexponential and biexponential fits, and their respective residulas
(average |90◦−Θ| minus fitted curves). The instantaneous average of |90◦−Θ| and the fitted curves
are already shown in Figure 2 of the main text.

Figure S6: Residuals of monoexponential and biexponential fits to the instantaneous |90◦ − Θ|
from the nonequilibrium excited-state QM/MM simulations averaged over time bins of 140 fs.

4 Initial conditions for the S1 QM/MM trajectories

Photoexcitation of ground-state [Cu(dmphen)2]
+ molecules from a thermal equilibrium en-

semble to the S1 state is assumed to be an instantaneous process. Figure S7 illustrates how
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Figure S7: Schematic representation of the generation of initial conditions for the propagation of
the nonequilibrium BOMD trajectories of [Cu(dmphen)2]

+ in the S1 state in acetonitrile or vacuum.
The black and red dots are free energy curves obtained as potential of mean force (PMF) using the
distributions of flattening angles Θ built from the equilibrated ground-state QM/MM BOMD data
(grey curve) and from all S1 QM/MM BOMD data (not shown), respectively; while the continuous
black and red curves are cubic spline fits. Histogramming the Θ values of the ground-state QM/MM
frames selected for the excited-state propagation gives the (unnormalized) distribution shown with
blue vertical bars. The vertical arrows depict the promotion of ground-state molecules to S1.

nonequilibrium initial conditions for the propagation of the excited-state QM/MM and gas-

phase trajectories are generated according to this picture of instantaneous excitation. First,

data from the QM/MM BOMD simulations in the canonical ensemble at 300 K (around 65000

frames forming a statistically significant classical distribution of configurations in thermal

equilibrium with the solvent) are collected. Subsequently, 48 S1 (QM/MM as well as gas-

phase) trajectories are started using initial positions and velocities from QM/MM frames

drawn randomly from this ground-state equilibrium ensemble. Due to the flexibility along

the flattening coordinate in the ground state at 300 K, molecules that can be excited posses

a wide range of flattening angles Θ, as implied from the histogram of selected configurations

shown in Figure S7.
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5 Ground-state distribution of methyl dihedral angles
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Figure S8: Polar distribution of HCCN methyl dihedral angles Γ in [Cu(dmphen)2]
+ (see Figure

5 in the main text) sampled from the 300 K equilibrated QM/MM BOMD data of the complex in
the ground-state. The black line represents the average of the distribution considering the peak at
low angles.

6 ASE implementation of an acetonitrile force field

The QM/MM BOMD simulations performed in this work use a classical force field for ace-

tonitrile. We opted for the pairwise interaction potential from Guàrdia et al.,S17 which was

shown to deliver structural and thermodynamic properties for liquid acetonitrile in fairly

good agreement with experiments. Acetonitrile is modeled as a linear molecule with three

interaction sites, corresponding to the Nitrogen atom, the middle Carbon and the methyl

group (Me), respectively. The bond lengths are dMeC = 1.458 Å and dCN = 1.157 Å. The

form of the interaction energy between two acetonitrile molecules, acn1 and acn2, is the

following:

Eacn1−acn2 =
∑
i∈acn1

∑
j∈acn2

{
qiqj
rij

+ 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]}

(2)
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Figure S9: RDFs between sites of acetonitrile molecules simulated by full MM MD and QM/MM
BOMD at 300 K using the implementation of a classical pairwise potential for acetonitrile in ASE.
The QM/MM RDFs are computed between the atoms of a single QM acetonitrile and the sites the
MM molecules. The agreement with the RDFs presented by Guàrdia et al.,S17 who first proposed
this classical force field for acetonitrile, confirms the ASE implementation has been carried out
correctly.
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where rij is the distance between site i on molecule acn1 and site j on molecule acn2, qi and

qj their partial charges, and εij and σij are Lennard-Jones (LJ) parameters. The interaction

parameters were determined by Guàrdia et al.S17 by fitting ab initio calculations of the

acetonitrile dimer in different configurations.

We have implemented this classical interaction potential for acetonitrile in the ASE pro-

gram, in conjunction with a method for holonomic constraints for rigid linear triatomic

systems (see following section). We validate the implementation by simulating 494 MM ace-

tonitrile molecules in a cubic box with 35 Å side length (giving the density of acetonitrile at

∼300 K) by MD in the NVT ensemble. The box was first equilibrated at 300 K, after which

propagation was continued for around 100 ps with a time step of 1 fs. In this simulation,

thermal equilibrium is achieved using the Langevin thermostat implemented in ASE, while

periodic boundary conditions are treated according to the minimum image convention. Fig-

ure S9 shows the RDFs for all atomic pairs sampled from the equilibrated trajectory with

a radial bin of 0.01 Å. There is a very good correspondence between these RDFs and those

reported by Guàrdia et al.S17 from MD simulations at a constant temperature of 298 K using

the same acetonitrile force field (also shown in Figure S9).

We further test the QM/MM electrostatic embedding interfacing between the acetonitrile

classical potential in ASE and the GPAW DFT code by propagating a BOMD trajectory of

a single QM acetonitrile molecule in MM acetonitrile at the density of the liquid at 300 K,

as in the full MM simulation. The QM subsystem is described using the PBE functional

and tzp basis setS18 in a GPAW cell with 0.18 Å grid spacing. We choose to use the same

LJ parameters for the QM and MM molecules, with the exception of the Hydrogen atoms

of the QM acetonitrile, which are excluded from the computation of LJ interactions. The

propagation is done in the NVT ensemble at 300 K with a 1 fs time step for ∼75 ps after

thermal equilibration. During the dynamics, all C-H bond lengths and H-H distances within

the QM molecule are constrained with the ASE implementation of RATTLE.S19 Figure S9

compares the RDFs sampled from the atoms of the single QM acetonitrile (excluding the H
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atoms) to the sites of the MM molecules with the MM RDFs. The good agreement between

the MM and QM/MM descriptions confirms the reliability of the QM/MM interfacing.

7 Holonomic constraints for linear triatomic molecules

Molecular dynamics simulations of rigid molecular systems are most often performed by

applying bond constraints between pairs of particles in cartesian coordinates.S20,S21 In cer-

tain cases, however, bond constraints alone cannot ensure rigidity of the molecular geome-

try,S22,S23 and special handling is required. One example is represented by linear triatomic

molecules, since defining bond constraints between the atomic pairs does not remove all four

internal degrees of freedom. In order to employ the three-site acetonitrile force field from

Guàrdia et al.S17 presented in the previous section in MD simulations, we have implemented

a scheme for holonomic constraints adapted from Ciccotti et al.S23 The implementation is

available within the ASE program and can be used to perform MD simulations of any kind

of rigid linear triatomic system in cartesian coordinates in the NVE and NVT ensembles.

Let us consider a triatomic molecular entity A-C-B. The implemented strategy applies a

bond constraint σ to fix the distance dAB between the outer particles:

σ ≡ |rA − rB|2 − d2AB = 0 (3)

and a linear vectorial constraint τ connecting the position of the central particle C with

those of A and B:

τ ≡ cArA + cBrB − rC = 0 (4)

where ri denotes position vectors in cartesian coordinates, and the constants cA and cB are

determined from the fixed interparticle distances (cA =
dCB

dAB

, cB =
dAC

dAB

). The total forces on
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the three particles are given by:

F′A = FA − λ
∂σ

∂rA
− ∂(µ · τ )

∂rA
= FA − 2λrAB − cAµ (5a)

F′B = FB − λ
∂σ

∂rB
− ∂(µ · τ )

∂rB
= FB + 2λrAB − cBµ (5b)

F′C = FC −
∂(µ · τ )

∂rC
= FC + µ (5c)

where FA, FB and FC are the forces due to intramolecular and intermolecular potentials, λ

and µ are Lagrange multipliers associated with the constraints σ and τ respectively, and we

have used the abbreviated notation rAB = rA − rB. To propagate such a rigid system in an

MD simulation, one only needs to explicitly integrate the equations of motion for the particles

A and B, connected by a bond constraint, since the time evolution of the coordinates of C

follows directly from the constraint τ (Equation 4). In order to do that, an expression of µ

in terms of the atomic forces (FA, FB and FC) and λ needs to be found. This corresponds to

a redistribution of the forces within the molecular system, and can be done by first writing

the equations of motion for all three particles:

r̈A =
1

mA

(FA − 2λrAB − cAµ) (6a)

r̈B =
1

mB

(FB + 2λrAB − cBµ) (6b)

r̈C =
1

mC

(FC + µ) (6c)

where mi are the masses; and then substituting these expressions in the second time deriva-

tive of the constraint τ (cAr̈A + cBr̈B − r̈C = 0). By doing so, one obtains:

µ =
1

h
[mBmCcAFA +mAmCcBFB −mAmBFC − 2mC (mBcA −mAcB)λrAB] (7)

with h = mBmCc
2
A +mAmCc

2
B +mAmB. The equations of motion for the particles A and B
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are derived by inserting Equation 7 into Equations 6a and 6b:

mAr̈A =

(
1− mBmCc

2
A

h

)
FA −

mAmCcAcB
h

FB +
mAmBcA

h
FC − 2lAλrAB

= F̃A − 2lAλrAB (8a)

mBr̈B =

(
1− mAmCc

2
B

h

)
FB −

mBmCcAcB
h

FA +
mAmBcB

h
FC + 2lBλrAB

= F̃B + 2lBλrAB (8b)

where lA = −mBmCc
2
A −mAmCcAcB − h

h
and lB = −mAmCc

2
B +mBmCcAcB − h

h
. The sec-

ond equalities in Equations 8a and 8b define collective forces F̃A and F̃B acting on the outer

particles. Clearly, the problem of propagating a rigid linear triatomic system is reduced to

solving the equations of motion of a rigid diatomic molecule A-B with a particular redistri-

bution of the forces. Once the time evolution of rA and rB is known from the integration of

Equations 8a and 8b, the time-dependent rC is obtained from Equation 4:

rC = cArA + cBrB (9)

In ASE, the Velocity Verlet algorithm can be used to integrate the equations of motion

for simulations in the NVE ensemble; while for NVT simulations, a second-order integrator

of the Langevin equationsS24 is available. In the following, we show how Equations 8a and

8b are integrated numerically using the Velocity Verlet algorithm.S19 The Velocity Verlet

equations for propagation of the rigid unit A-B with a time step ∆t can be written as:

rA(t+ ∆t) = r′A(t+ ∆t)− ∆t2

mA

lAλprAB(t) (10a)

ṙA(t+ ∆t) = ṙ′A(t+ ∆t)− ∆t

mA

lA [∆tλprAB(t) + λvrAB(t+ ∆t)] (10b)

rB(t+ ∆t) = r′B(t+ ∆t) +
∆t2

mB

lBλprAB(t) (10c)

ṙB(t+ ∆t) = ṙ′B(t+ ∆t) +
∆t

mB

lB [∆tλprAB(t) + λvrAB(t+ ∆t)] (10d)
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where:

r′i(t+ ∆t) = ri(t) + ṙi(t)∆t+
∆t2

2mi

F̃i(t) (11a)

ṙ′i(t+ ∆t) = ṙi(t) +
∆t

2mi

[
F̃i(t) + F̃i(t+ ∆t)

]
(11b)

are the positions and velocities updated at time t + ∆t considering only forces that arise

from intramolecular and intermolecular potentials. In Equations 10a-10d we have introduced

different Lagrange multipliers, λp and λv, to correct positions and velocities for the forces

due to the bond constraint. λp is determined such to satisfy the constraint σ (Equation 3)

at time t+ ∆t, which is:

|rA(t+ ∆t)− rB(t+ ∆t)|2 = d2AB (12)

This is done by inserting the right-hand side of Equations 10a and 10c in Equation 12, finding

the above quadratic expression for λp:

λp =
[r′AB(t+ ∆t) · rAB(t)]−

√
[r′AB(t+ ∆t) · rAB(t)]2 − r2AB(t) [r′2AB(t+ ∆t)− d2AB]

∆t

(
lA
mA

+
lB
mB

)
r2AB(t)

(13)

where lA and lA have been defined previously (see Equations 8a and 8b). The Lagrange

multiplier for the correction of the velocities, λv, is chosen in order to satisfy the time

derivative of the constraint in Equation 12:

[ṙA(t+ ∆t)− ṙB(t+ ∆t)] · [rA(t+ ∆t)− rB(t+ ∆t)] = 0 (14)
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By using Equations 10b and 10d in Equation 14, the following expression for λv is obtained:

λv =

[
ṙ′A(t+ ∆t)− ṙ′B(t+ ∆t)−∆t2

(
lA
mA

+
lB
mB

)
λprAB(t)

]
· rAB(t+ ∆t)(

lA
mA

+
lB
mB

)
d2AB

(15)

Having derived expressions for the Lagrange multipliers associated with the bond constraint

σ, it is possible to know the positions and velocities of the outer particles A and B of the rigid

triatomic system at each subsequent time step through Equations 10a-10d. The positions

and velocities of the central particle C follow directly from Equation 9. Figure S10 depicts a

schematic summary of a step in the MD propagation of a rigid linear triatomic system with

the presented method of holonomic constraints.

1 2
 

3 4
 

1 1

B

C
 

A
 

Figure S10: Schematic representation of the application of holonomic constraints in the MD
propagation of a rigid linear triatomic system. Continuous arrows represent atomic displacements
after an unconstrained MD step, while dashed arrows represent the adjustment of positions due to
the constraints. 1 is the initial configuration, 2 is the configuration after unconstrained propagation
of the diatomic unit A-B, 3 shows the application of the bond constraint (Equation 3), and 4 is
the final configuration, with same internal geometry as 1, after application of the linear vectorial
constraint (Equation 4) to the position of C.

The constraint strategy described therein is readily extended to Velocity Verlet algo-

rithms generalized for solving the Langevin equations of motion, like the second-order NVT

integrator implemented in ASE,S24 provided that the additional stochastic forces are prop-

erly redistributed within the triatomic system as in Equations 8a and 8b. We further note
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that in the presented scheme of holonomic constraints, Lagrange multipliers are efficiently

computed noniteratively and without neglecting second order terms. This would not be

possible if more than one bond constraint per triatomic system were present, in which case

the iterative RATTLE algorithmS19 is required, thus increasing the computational cost of

computing the Lagrange multipliers.

8 Cartesian coordinates of the optimized geometries

Table S3: Cartesian coordinates in Å and Hirshfeld partial charges in elementary
charge unit for the gas-phase optimized structure of [Cu(dmphen)2]

+ in the S0 and S1

states

S0 S1

Atom x y z qgs x y z qes

Cu 12.19787 9.23250 9.22780 0.145 12.18337 10.09750 9.26471 0.273

N 10.64024 10.27301 8.35697 -0.107 10.68682 11.34390 8.74811 -0.111

N 10.64061 8.21928 10.13238 -0.107 10.68615 8.85342 9.79916 -0.111

C 8.22685 11.42441 7.39360 0.003 8.28080 12.67772 8.03901 -0.004

C 8.22792 7.07185 11.10059 0.003 8.27913 7.52266 10.51099 -0.003

C 9.40976 9.79885 8.77499 0.048 9.44190 10.75285 8.98681 0.036

C 9.41005 8.69532 9.71659 0.048 9.44147 9.44678 9.56395 0.036

C 10.67318 11.30736 7.47059 0.089 10.73548 12.55199 8.10240 0.088

C 10.67415 7.18751 11.02169 0.089 10.73464 7.64602 10.44580 0.088

C 8.16369 10.34156 8.31844 0.015 8.20332 11.40407 8.66236 0.015

C 8.16430 8.15427 10.17517 0.015 8.20255 8.79631 9.88817 0.015

C 9.47298 11.89903 6.97806 -0.022 9.54222 13.22816 7.74146 -0.031

C 9.47403 6.59690 11.51594 -0.022 9.54045 6.97181 10.80802 -0.031

C 6.92213 9.77536 8.80171 -0.014 6.96379 10.72287 8.97563 -0.012

C 6.92258 8.72045 9.69199 -0.014 6.96317 9.47836 9.57570 -0.012

H 9.54511 5.76279 12.23620 0.051 9.61655 5.99995 11.32588 0.049
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H 7.29434 6.62030 11.48478 0.055 7.35345 6.97890 10.77542 0.054

H 5.97067 8.29046 10.05383 0.050 6.00909 8.97935 9.82711 0.051

H 5.97003 10.20493 8.43980 0.050 6.00983 11.22269 8.72428 0.051

H 7.29317 11.87666 7.01052 0.055 7.35593 13.22122 7.77224 0.054

H 9.54396 12.73446 6.25930 0.051 9.61989 14.20001 7.22336 0.049

C 12.03556 11.79764 7.02514 -0.071 12.09320 13.13812 7.76877 -0.070

H 12.62649 12.16835 7.89294 0.036 12.60943 13.53379 8.67194 0.036

H 12.62107 10.96750 6.56968 0.036 12.75788 12.36393 7.32618 0.033

H 11.94730 12.61732 6.28268 0.045 11.98883 13.97195 7.04437 0.048

C 12.03639 6.69577 11.46683 -0.071 12.09132 7.05574 10.77759 -0.070

H 12.62720 6.32519 10.59887 0.036 12.60112 6.65546 9.87287 0.036

H 12.62309 7.52430 11.92377 0.036 12.76121 7.82720 11.21798 0.033

H 11.94689 5.87530 12.20837 0.045 11.98374 6.22233 11.50226 0.048

N 13.75928 10.19110 10.22502 -0.108 13.68202 11.12325 10.16229 -0.111

N 13.75794 8.30508 8.27012 -0.106 13.68147 9.07847 8.38930 -0.111

C 16.18112 11.26367 11.26757 0.003 16.09161 12.13526 11.27892 -0.003

C 16.17183 7.22757 7.22404 0.002 16.08414 8.06404 7.27006 -0.004

C 14.99005 9.75436 9.76522 0.048 14.92519 10.62840 9.75640 0.036

C 14.98950 8.73924 8.73022 0.048 14.92491 9.57262 8.79488 0.036

C 13.73460 11.15583 11.18819 0.090 13.63622 12.06522 11.15791 0.088

C 13.72616 7.34085 7.30701 0.089 13.62957 8.13981 7.39118 0.087

C 16.23869 10.25719 10.26042 0.015 16.16542 11.13211 10.27692 0.015

C 16.23533 8.23393 8.23147 0.015 16.16304 9.06656 8.27232 0.015

C 14.93759 11.70666 11.72102 -0.022 14.83132 12.57364 11.72758 -0.031

C 14.92602 6.78600 6.77352 -0.022 14.82181 7.62816 6.82132 -0.031

C 17.47887 9.73306 9.73172 -0.014 17.40484 10.58708 9.76193 -0.012

C 17.47724 8.75662 8.75754 -0.014 17.40380 9.60963 8.78627 -0.012

H 18.43218 10.13114 10.12539 0.050 18.35830 10.97620 10.16382 0.051

H 18.42913 8.35742 8.36155 0.050 18.35663 9.21998 8.38390 0.051
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H 17.10491 6.80454 6.80759 0.055 17.00868 7.63748 6.83928 0.054

H 14.85573 6.00582 5.99513 0.051 14.74287 6.87177 6.02148 0.049

H 14.87055 12.48657 12.50013 0.051 14.75344 13.33233 12.52559 0.049

H 17.11671 11.68427 11.68119 0.056 17.01743 12.55936 11.70877 0.054

C 12.36488 6.87869 6.82702 -0.071 12.27124 7.67376 6.90222 -0.070

H 11.77379 6.44711 7.66598 0.035 11.74279 7.06234 7.66720 0.035

H 11.77719 7.73568 6.42762 0.036 11.61539 8.54273 6.67146 0.034

H 12.45871 6.11080 6.03135 0.045 12.37812 7.05845 5.98534 0.048

C 12.37984 11.62820 11.67760 -0.070 12.28252 12.54431 11.64859 -0.070

H 11.78685 12.06460 10.84221 0.036 11.75995 13.16265 10.88463 0.035

H 11.78839 10.77525 12.08024 0.037 11.61774 11.68164 11.87742 0.035

H 12.48291 12.39454 12.47350 0.045 12.39629 13.15685 12.56630 0.048
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