
Optimal Background Treatment in Pulse Dipolar Spectroscopy

Luis Fábregas Ibáñez1 , Gunnar Jeschke1∗
1ETH Zurich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland

Supplementary Information

1. Metric sensitivity

As mentioned in the main text, the regularized distance distributions are compared to the underlying
ground truth P0 using three different similarity metrics: the Euclidean distance (`2)

D(P,P0) = ‖P −P0‖2, (1)

the Bray-Curtis distance (`1)

D(P,P0) =
‖P −P0‖1

‖P + P0‖1
, (2)

and the Chebyshev distance (`∞)
D(P,P0) = ‖P −P0‖∞ (3)

where P is the fitted distance distribution and P0 the ground truth. Among them, the Euclidean distance
is closely related to the root-mean square deviation (RMSD), from which it differs only by a factor

√
N∆r,

where N is the number of data points and ∆r is the increment of the discrete distance axis. For comparison
of distributions with the same N and ∆r, as we perform them here, the Euclidean distance distance is
proportional to the RMSD.

∗Corresponding author

Preprint submitted to PCCP December 17, 2019

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2019

R
el

at
iv

e
R

el
at

iv
e

R
el

at
iv

e

R
el

at
iv

e
R

el
at

iv
e

R
el

at
iv

e

R
el

at
iv

e
R

el
at

iv
e

R
el

at
iv

e

σNoise = 0.02 σNoise = 0.02 σNoise = 0.02

σNoise = 0.05 σNoise = 0.05 σNoise = 0.05

σNoise = 0.10 σNoise = 0.10 σNoise = 0.10

Figure S1 – Euclidean, Bray-Curtis and Chebyshev distances obtained from the statistical analysis of 8500 different form factors
for different relative background decays and three different noise standard deviations: low (σ = 0.02), medium (σ = 0.05) and
high (σ = 0.1) noise. For each instance the background is treated either by division (green), subtraction (blue), employing the
kernel KB (yellow) or kernel K√

B (red). All metric distances are evaluated relative to the background-free case. The coloured
dotted lines represent the median values and the shaded areas, the interquartile ranges (IQR) of the data.

2

6 8 10 12 14 16 186 8 10 12 14 16 186 8 10 12 14 16 18

σNoise = 0.05 σNoise = 0.10σNoise = 0.02
D

iv
is

io
n

S
ub

tr
a

ct
io

n
K

er
n

el
K

er
n

el
B

ac
kg

ro
un

d-
fr

ee

Figure S2 – Mean Euclidean distances obtained from the statistical analysis of 225 different form factors for different relative
background decays and three different noise standard deviations: low (σ = 0.02), medium (σ = 0.05) and high (σ = 0.1) noise.
The traces were cut at different positions relative to the end of the trace prior to regularization. Each column represents a
different noise level and each row a different background treatment approach. The colour coding for each column is given by a
colorbar on the top.

3

0.2 0.4 0.6 0.8

Relative Background Decay

-20%

-10%

0%

10%

20%

R
el

at
iv

e
F

it
E

rr
or

0.2 0.4 0.6 0.8

Relative Background Decay

-20%

-10%

0%

10%

20%

R
el

at
iv

e
F

it
E

rr
or

0.2 0.4 0.6 0.8

Relative Background Decay

-20%

-10%

0%

10%

20%

R
el

at
iv

e
F

it
E

rr
or

0.2 0.4 0.6 0.8

Relative Background Decay

-20%

-10%

0%

10%

20%

R
el

at
iv

e
F

it
E

rr
or

0.2 0.4 0.6 0.8

Relative Background Decay

-20%

-10%

0%

10%

20%

R
el

at
iv

e
F

it
E

rr
or

0.2 0.4 0.6 0.8

Relative Background Decay

-20%

-10%

0%

10%

20%

R
el

at
iv

e
F

it
E

rr
or

(A)

(B)

σNoise = 0.02

σNoise = 0.02

σNoise = 0.05

σNoise = 0.05

σNoise = 0.10

σNoise = 0.10

Figure S3 – Probability density distributions of fitting errors obtained from the statistical analysis of 20000 different form
factors using DeerAnalysis (with default settings) for different relative background decays and three different noise standard
deviations: low (σ = 0.02), medium (σ = 0.05) and high (σ = 0.1) noise. The probability density is encoded in the colour, with
darker/brighter colours representing smaller/larger values, respectively. In (A) the raw probability density distributions, while
in (B) the corresponding kernel density estimation of bandwidth h = 0.30 is given.

4

Table S1 – Indices of the model distance distributions employed for the examples in Fig. 9 of the main text. Given n index
(idx), the distribution can be retrieved via P = distributions2LZM(idx, :).

Example Distribution Index NPoints tmax [µs]
A 463 300 3
B 47 160 8
C 3708 160 16
D 4313 300 3
E 1203 300 16
F 4295 160 8
G 961 300 8
H 57 200 3
I 1195 300 3
J 9 100 3
K 3321 300 16

2. Model distance distribution indices

3. Methodology & Implementation

3.1. Preparing the form factors
First, we start by loading the Edwards&Stoll DEER dataset library

1 distributions_2LZM = load (’ distributions_2LZM ’) ;
2 Sdata_2LZM = load (’Sdata_2LZM ’) ;
3 timetraces_2LZM = load (’ timetraces_2LZM ’) ;

and, as mentioned in the main text, a subset is randomly selected from the library. Since we need to add
the background prior to the noise, we take the noiseless form factors from the timetraces_2LZM library.
The random sampling is performed using a fixed random number as follows:

1 %Generate random numbers
2 %−−
3 rng (2 , ’ t w i s t e r ’)
4 RandomIndexVector = randperm(60000 , Models2Test) ;
5

6 %Extract cur rent random number
7 %−−
8 RandomIndex= RandomIndexVector (j) ;
9

10 %Extract data from l i b r a r y
11 %−−
12 ModelIndex = timetraces_2LZM . data (RandomIndex) . Pidx ;
13 %Extract time ax i s components
14 TimeStep = timetraces_2LZM . data (RandomIndex) . dt ;
15 tmin = timetraces_2LZM . data (RandomIndex) . tmin ;
16 tmax = timetraces_2LZM . data (RandomIndex) . tmax ;

Since we need to expand the time axis to better represent RIDME and SIFTER data, we do so by increasing
all tmax values by a fixed number (in our case expansionFactor=2.5).

1 %Expand time t r a c e to l onge r t imes
2 %−−

5

3 tmax = expans ionFactor ∗tmax ;
4 nPoints = tmax/TimeStep ;
5 %Expand time t r a c e to l onge r t imes
6 %−−
7 tmax = expans ionFactor ∗tmax ;
8 nPoints = tmax/TimeStep ;
9 TimeAxis = linspace (0 , nPoints ∗TimeStep , nPoints) ;

The next step is to construct the dipolar kernel K in order to re-compute the form factor from the distance
distribution. The kernel is constructed as in DeerAnalysis, where the maximal/minimal detectable distances
are given by the time step and trace length. The kernel is then numerically computed using the same function
as in DeerAnalysis.

1 %Construct ke rne l
2 rmin = (4∗ TimeStep ∗52 . 04/0 . 85) ^(1/3) ;
3 rmax = 6∗(length (TimeAxis) ∗TimeStep /2) ^(1/3) ;
4 tmax = TimeStep∗ nPoints ;
5 DistanceAxis = linspace (rmin , rmax , nPoints) ;
6 dr = mean(d i f f (DistanceAxis)) ;
7 [Kernel , DistanceAxisKernel , ~ ,U, sm ,X,V, L] = get_kerne l (nPoints , TimeStep , rmin ,

rmax , 2 , s t r u c t ()) ;
8 Kernel = Kernel ∗dr ;

Once the kernel has been computed, it can be used to obtain the noiseless dipolar evolution function.
However, in order to directly obtain the form factor, we then add an offset. The kernel can then be applied
to the distance distribution to obtain a form factor.

1 %Add o f f s e t to get form f a c t o r s
2 f o r k=1: s ize (Kernel , 1)
3 Kernel (k , :) = Kernel (k , :) + Of f s e t ;
4 end
5 %Construct extended time t r a c e
6 TimeTrace = Kernel ∗ Mode lDi s t r ibut ions ;
7 TimeTrace = TimeTrace/TimeTrace (1) ;

3.2. Background treatment
First we construct the background-free form factor. It only requires the addition of the noise and can

be then regularized.

1 %CASE 1 (no background)
2 %−−
3 %Add a . u . o f f s e t to form f a c t o r
4 %Prepare time t r a c e
5 TimeTrace1 = LocalTimeTrace ;
6 TimeTrace1 = TimeTrace1 + Noise ;
7 %Regu la r i z e
8 [D i s t r i but i on ,~ , FittedTimeTrace1 ,~ , Regular izat ionParameter1] = r e g u l a r i z e D e e r

(TimeTrace1 , TimeAxis , RegularizationMethod , opt ions , [] , KernelData) ;
9 %Normalize d i s t r i b u t i o n to unity i n t e g r a l

10 Di s t r i b u t i on 1 = D i s t r i b u t i o n /sum(D i s t r i b u t i o n) /dr ;

The background-divided case is obtained by, first multiplying the background function to the form factor
and then adding the noise (the order is important to not damp the noise by the background multiplication).
Once the noise is added, the background is divided and the resulting signal regularized.

6

1 %CASE 2 (background d iv ided)
2 %−−
3 %Apply background
4 TimeTrace2 = LocalTimeTrace . ∗ Background ;
5 %Add no i s e
6 TimeTrace2 = TimeTrace2 + Noise ;
7 %Correct background by d i v i s i o n
8 TimeTrace2 = TimeTrace2 . / Background ;
9 %Regu la r i z e

10 [D i s t r i but i on ,~ , FittedTimeTrace2 ,~ , Regular izat ionParameter2] = r e g u l a r i z e D e e r
(TimeTrace2 , TimeAxis , RegularizationMethod , opt ions , [] , KernelData) ;

11 %Normalize d i s t r i b u t i o n to unity i n t e g r a l
12 Di s t r i b u t i on 2 = D i s t r i b u t i o n /sum(D i s t r i b u t i o n) /dr ;

Now we want to construct the signal for the KB kernel method. As before, background and noise are added
and left otherwise untreated. The dipolar kernel is modified according to the definition of the KB kernel.
This new kernel is then employed for the regularization with the untreated signal.

1 %CASE 3 (background in ke rne l)
2 %−−
3 %Apply background
4 TimeTrace3 = LocalTimeTrace . ∗ Background ;
5 %Add no i s e
6 TimeTrace3 = TimeTrace3 + Noise ;
7 %Prepare ke rne l
8 KernelB = KernelData . Kernel ;
9 KernelB = KernelB ’ ;

10 f o r k=1: s ize (KernelB , 1)
11 KernelB (k , :)= Background ’ . ∗ (KernelB (k , :)) ;
12 end
13 KernelB = KernelB ’ ;
14 KernelBData = KernelData ;
15 KernelBData . Kernel = KernelB ;
16 %Regu la r i z e
17 [D i s t r i but i on ,~ , FittedTimeTrace3 ,~ , Regular izat ionParameter3] = r e g u l a r i z e D e e r

(TimeTrace3 , TimeAxis , RegularizationMethod , opt ions , Background , KernelBData) ;
18 %Normalize d i s t r i b u t i o n to unity i n t e g r a l
19 Di s t r i b u t i on 3 = D i s t r i b u t i o n /sum(D i s t r i b u t i o n) /dr ;

The background-subtracted signal is constructed as the divided one with the only difference being that the
background is subtracted instead of divided.

1 %CASE 4 (background subtracted)
2 %−−
3 %Apply background
4 TimeTrace4 = LocalTimeTrace . ∗ Background ;
5 %Add no i s e
6 TimeTrace4 = TimeTrace4 + Noise ;
7 %Prepare time t r a c e
8 TimeTrace4 = TimeTrace4 + Of f s e t − Background ;
9 %Regu la r i z e

10 [D i s t r i but i on ,~ , FittedTimeTrace4 ,~ , Regular izat ionParameter4] = r e g u l a r i z e D e e r
(TimeTrace4 , TimeAxis , RegularizationMethod , opt ions , [] , KernelData) ;

7

11 %Normalize d i s t r i b u t i o n to unity i n t e g r a l
12 Di s t r i b u t i on 4 = D i s t r i b u t i o n /sum(D i s t r i b u t i o n) /dr ;

For the K√
B kernel method, more careful processing is required. First the background and noise are added

to the noiseless form factor. Then the square root of the background is divided from the signal. The
basic dipolar kernel is then adapted to the definition of K√

B. Now, before regularization, the optimal
regularization parameter must be searched using the signal and kernel employed during the KB method.
Once it is found, the regularization is performed with the actual signal and the K√

B kernel.

1 %CASE 5 (background in ke rne l)
2 %−−
3 %Apply background
4 TimeTrace5 = LocalTimeTrace . ∗ Background ;
5 %Add no i s e
6 TimeTrace5 = TimeTrace5 + Noise ;
7 %Correct square root o f the background
8 TimeTrace5 = TimeTrace5 . / sqrt (Background) ;
9

10 %Get the r e g u l a r i z a t i o n parameter us ing the s i g n a l and ke rne l o f case 3 f o r
the r e s i d u a l

11 opt ions5 = opt ions ;
12 opt ions5 . KernelB = KernelB ;
13 opt ions5 . TimeTraceB = TimeTrace3 ;
14

15 %Prepare ke rne l
16 KernelB2 = KernelData . Kernel ;
17 KernelB2 = KernelB2 ’ ;
18 f o r k=1: s ize (KernelB2 , 1)
19 KernelB2 (k , :)= sqrt (Background) ’ . ∗ (KernelB2 (k , :)) ;
20 end
21 KernelB2 = KernelB2 ’ ;
22 KernelBData = KernelData ;
23 KernelBData . Kernel = KernelB2 ;
24 %Search optimal r e g u l a r i z a t i o n parameter with KB ke rne l and s i g n a l (from case

3)
25 OptimalRegular izat ionParameter5 = se l ec t ionMethods (’ a i c ’ , TimeTrace5 ’ , KernelB2

, L , [] , [] , opt ions5) ;
26 opt ions5 . ForcedRegular izat ionParameter = OptimalRegular izat ionParameter5 ;
27 opt ions5 . ForcedHuberParameter = 1 ;
28 %Regu la r i z e
29 [D i s t r i but i on ,~ , FittedTimeTrace5 ,~ , Regular izat ionParameter5] = r e g u l a r i z e D e e r

(TimeTrace5 , TimeAxis , RegularizationMethod , opt ions5 , Background , KernelBData)
;

30 %Normalize d i s t r i b u t i o n to unity i n t e g r a l
31 Di s t r i b u t i on 5 = D i s t r i b u t i o n /sum(D i s t r i b u t i o n) /dr ;

8

	Metric sensitivity
	Model distance distribution indices
	Methodology & Implementation
	Preparing the form factors
	Background treatment

