Supporting Information

Theoretical screening of single atoms anchored on defective graphene for electrocatalytic N₂ reduction reactions: a DFT study

Pingping Liu, Cheng Fu, Yafei Li* and Haiyan Wei*

*Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Jiangsu Key Lab for NSLSCS, Nanjing Normal University, Nanjing 210097, China. E-mail: liyafei@njnu.edu.cn, weihaiyan@njnu.edu.cn

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

1.Table S1. Computed adsorption energies of single Mo atom, N₂ and NNH on MoN₃ 555-777 graphene sheet using different supercell sizes.

2.Table S2. Computed N_2 , N_2H and NH_2 adsorption energies on the surface of MoN₃ 555-777 graphene sheets by PBE and RPBE functionals.

3.Table S3. Calculated zero point energies and entropy of different adsorption species. The entropies and vibrational frequencies of molecules in the gas phase were taken from the NIST database.

4.Table S4. The adsorption energy (E_{ads}) and free-energy variation (ΔG) of H and N₂ on MoN₃@555-777 graphene sheets.

5. Table S5. Computed adsorption energies of N2 and N2H on M02 and M013 cluster.

6.Fig. S1 Free-energy profiles at zero potential (blue line) and onset-potential (red line) along the mixed mechanism of N₂ reduction proceeded on MoN₃@555-777 graphene sheets.

7.Fig. S2 The minimum energy path (MEP) for the diffusion of the adsorbed Mo atom from the defect binding site to a neighboring hollow site.

8.Fig. S3 Calculated free energy diagrams for N2 adsorption and protonation of N2 on (a) Mo2 and (b) Mo13.

9.Fig. S4 DOS of MoN₃@555-777 graphene sheets and PDOS of Mo 4d orbitals.

10.Fig. S5 Spin-polarized density for (a) MoN_3 555-777 graphene sheet and (b) N_2 adsorption on MoN_3 @555-777 graphene sheets. The isovalue is set to be 0.004 e/Å³.

11.Fig. S6 Definition of three moieties of N_xH_y adsorbed MoN₃ by using N₂H as mode.

12.Fig. S7 Structures of (a) MoC_3 , (b) MoC_2N_1 and (c) MoC_1N_2 active centers. Gray, cyan and orange balls. represent the C, Mo and N atoms, respectively.

13.Fig. S8 Calculated free energy diagrams for N_2 and N_2H adsorption on MoC₃ (a) end-on and (b) side-on, MoC₃N₁(c) end-on and (b) side-on as well as MoC₁N₂ (e) end-on and (f) side-on.

14. Fig. S9 Free energy profiles for N_2 reduction on (a) MoC_3 , (b) MoC_2N_1 and (c) MoC_1N_2 site through enzymatic pathway.

Supercell	5×5	6×6
E _{ads} (Mo)	-7.23	-7.14
$E_{ads}(N_2)$	-1.14	-1.22
E _{ads} (NNH)	-1.09	-1.14

Table S1. Computed adsorption energies of single Mo atom, N_2 and NNH on MoN₃ 555-777 graphene sheet using different supercell sizes.

Table S2. Computed N_2 , N_2H and NH_2 adsorption energies on the surface of MoN₃ 555-777 graphene sheets by PBE and RPBE functionals.

Functional	PBE	RPBE
$E_{ m ads}$ (N ₂)	-1.01	-0.86
$E_{\rm ads}$ (N ₂ H)	-2.83	-2.63
$E_{\rm ads}({ m NH_2})$	-4.07	-3.82

Species	$E_{\rm ZPE}$ (eV)	<i>TS</i> (eV)
N_2	0.15	0.58
H_2	0.27	0.42
NH ₃	0.58	0.56
*N-*N	0.20	0.12
*N-*NH	0.48	0.13
*NH -*NH	0.80	0.16
*NH-*NH ₂	1.14	0.18
*NH ₂ -*NH ₂	1.38	0.19
*NH ₂ -*NH ₃	1.69	0.21
*N-N	0.21	0.14
*N-NH	0.49	0.13
*NH-NH	0.80	0.12
*NH-NH ₂	1.10	0.20
*NH ₂ -NH ₂	1.47	0.17
*NH ₂ -NH ₃	1.63	0.23
*N-NH ₂	0.72	0.11
*N-NH ₃	1.03	0.21
*NH	0.34	1.10
*NH ₂	0.66	0.14
*NH ₃	1.02	0.17

Table S3. Calculated zero point energies and entropy of different adsorption species. The entropies and vibrational frequencies of molecules in the gas phase were taken from the NIST database.

Table S4. The adsorption energy (E_{ads}) and free-energy variation (ΔG) of H and N₂ on MoN₃@555-777 graphene sheets.

Adsorbate	E _{ads} (eV)	ΔG (eV)
Н	-0.80	-0.55
N ₂ -side-on	-1.14	-0.63
N ₂ -end-on	-1.01	-0.51

Table S5. Computed adsorption energies of N_2 and $N_2 H$ on Mo_2 and Mo_{13} cluster.

Cluster		Mois
$E_{\rm ads}(N_2)/eV$	-0.90	-1.03
E _{ads} (N ₂ H)/eV	-1.59	-2.22

Fig. S1 Free-energy profiles at zero potential (blue line) and onset-potential (red line) along the mixed mechanism of N_2 reduction proceeded on $MoN_3@555-777$ graphene sheets.

Fig. S2 The minimum energy path (MEP) for the diffusion of the adsorbed Mo atom from the defect binding site to a neighboring hollow site.

Fig. S3 Calculated free energy diagrams for N_2 adsorption and protonation of N_2 on (a) Mo_2 and (b) Mo_{13} .

Fig. S4 DOS of MoN_3 @555-777 graphene sheets and PDOS of Mo 4d orbitals

Fig. S5 Spin-polarized density for (a) MoN_3 555-777 graphene sheet and (b) N_2 adsorption on $MoN_3@555-777$ graphene sheets. The isovalue is set to be 0.004 e/Å³.

Fig. S6 Definition of three moieties of $N_x H_y$ adsorbed MoN₃ by using N₂H as mode.

Fig. S7 Structures of (a) MoC_3 , (b) MoC_2N_1 and (c) MoC_1N_2 active centers. Gray, cyan and orange balls represent the C, Mo and N atoms, respectively.

Fig. S8 Calculated free energy diagrams for N_2 and N_2 H adsorption on MoC₃ (a) end-on and (b) side-on, MoC₂N₁ (c) end-on and (b) side-on as well as MoC₁N₂ (e) end-on and (f) side-on.

Fig. S9 Free energy profiles for N_2 reduction on (a) MoC_3 , (b) MoC_2N_1 and (c) MoC_1N_2 site through enzymatic pathway