SUPPLEMENTARY MATERIAL

Volume Expansive Pressure (VEP) Driven Non-Trivial Topological Phase Transition In LiMgBi

Raghottam M Sattigeri ${ }^{1, a}$, Sharad Babu Pillai ${ }^{1, b}$, Prafulla K Jha ${ }^{1, c}$ and Brahmananda Chakraborty ${ }^{2, d}$
${ }^{1}$ Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara.
${ }^{2}$ High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai.
Corresponding Authors: ${ }^{a}$ raghottam.ms@gmail.com, ${ }^{b}$ sbpillai001@gmail.com, ${ }^{c}$ prafullaj@yahoo.com, ${ }^{d}$ brahma@barc.gov.in

Computational Details:

To get accurate band gap we have done simulations using the density functional theory based projector augmented wave (PAW) method as implemented in the VASP code [1, 2, 3, 4. The cut-off for the plane-wave basis expansion is taken as 500 eV . To sample the brillioun zone we have used a Monkhorst pack mesh of $6 \times 6 \times 6 \mathbf{k}$-points. We have employed both GGA exchange correlation functional [6] and state-of-the-art hybrid functional based on the Heyd-Scuseria-Ernzerhof (HSE06) functional [7], which gives better description of electronic and magnetic properties. The convergence criterion of $0.01 \mathrm{eV} / \AA$ for Hellmann-Feynman forces and $10^{6} \mathrm{eV}$ for total energy were considered.

Results

Figure 1 presents the Density of States for 4% VEP using hybrid functional. It is interesting to note that DOS at 4% VEP exhibits a semi-metal character with Dirac cone type signature having zero band gap, justifying our GGA predictions. With increasing VEP to 6.5%, we observe an opening of band gap, consistent to our GGA results. The band gap pattern is almost same for both GGA and hybrid functional calculations.

Figure 1: Density of States (DOS) under HSE06 (left) and GGA (right) at 4\% VEP(lower panel) and 6.5\% VEP; Fermi level is shown by black dotted line.

References

[1] Kresse G and Hafner J, Phys. Rev. B, 47, 558(R) (1993)
[2] Kresse G and Hafner J, Phys. Rev. B, 49, 14251 (1994)
[3] Kresse G and Furthmüller J, Comput. Mater. Sci., 6, 15-50 (1996)
[4] Kresse G and Furthmüller J, Phys. Rev. B, 54, 11169 (1996)
[5] Monkhorst J.H and Pack J. D, Phys. Rev. B, 13, 5188 (1976)
[6] Perdew J. P, Chevary J. A, Vosko S. H et.al., Phys. Rev. B, 46, 6671 (1992)
[7] Heyd J, Scuseria G.E and Ernzerhof M, J. Chem. Soc., 132, 2876 (2010)

