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I. SIMULATION PROTOCOL

Monte Carlo (MC) simulations of solvation applied the
standard Metropolis sampling1 as implemented in our previ-
ous studies.2 The solvent-solvent interactions were taken in
the Lennard-Jones (LJ) form

Uss(r) = 4ϵlJ
[
(σLJ/r)

12 − (σLJ/r)
6
]

(S1)

The solute was viewed as a hard-sphere core with the radius
a = R + σLJ/2, where the solvent diameter was identified
with its LJ diameter σs = σLJ. The attractive solute-solvent
interaction was taken in the form of the induction free energy

βFei = − 1
2 (z

∗)2α∗
∑
j

(σs/rj)
4, (S2)

where rj is the distance between the solute fixed at the center
of the simulation box and the solvent molecule. Further, the
sum runs over the N molecules of the solvent, α∗ = α/σ3

s ,
and (z∗)2 = β(ze)2/σs.
The MC simulations were performed for a cubic simula-

tion box with N = 500 molecules and the reduced density
ρ∗ = ρσ3

s = 0.8. Three values of the temperature-scaled LJ
energy βϵLJ were adopted in simulations including the solute
in the simulation box: 0.125, 0.5, and 1.0; 6 values of βϵLJ
were used in the simulations of the pure LJ liquid. The re-
duced polarizability α∗ was altered in the simulations in the
range between 0.02 and 0.1. The typical length of simulations
was ∼ 106 configurations of the entire simulation box. Test
runs with N = 862 solvent particles in the simulation box
were carried out. They produced the results virtually indistin-
guishable from those with N = 500 solvent particles.

II. STRUCTURE FACTORS

The derivations presented in the main text are based on
approximating the density-density structure factor of a liq-
uid with the corresponding structure factor of a Percus-Yevick
(PY) hard-sphere (HS) fluid.3 The k = 0 value of the HS struc-
ture factor S(k) is fixed by the isothermal compressibility βT

of the liquid through S(0) = kBTρβT . The structure factors
of fluids with more complex interaction potentials will deviate
from the structure factors of the HS fluid and here we test this
approximation by using the structure factors for a number of
LJ liquids simulated with the MC protocol.
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Figure S1. S(k) for LJ liquids at βϵLJ values indicated in the plot and
PY HS structure factor at ρ∗ = 0.8 corresponding to the simulation
conditions (red dashed line).

The structure factors3,4

S(k) = N−1⟨ρkρ−k⟩ (S3)

were calculated from the reciprocal-space density ρk on the
lattice vectors of the simulation box5 k = (2π/L)n for a cubic
simulation box with the side length L; n = {nx, ny, nz} are
non-negative integers excluding the point k = 0. The range
of k-values is limited by the lowest kmin = 2π/L available
for a finite-size simulation box. The k = 0 value, as well as
S(k) at k < kmin, were obtained by linear fitting of S(k)−1

to k2 at a number of lowest values of k provided by the lattice
vectors. The results for a number of scaled LJ energies βϵLJ is
shown in Fig. S1. Simulation trajectories with the values βϵLJ
equal to 0.125, 0.25, 0.5, 1.0, 1.5, 2.0 were produced for this
calculation.
Figure S1 shows S(k) produced by simulations in compar-

ison to the PY HS structure factor at ρ∗ used in simulations.
It is clear that low-k behavior of LJ S(k) deviates from the
HS result. Therefore, the packing density in the HS structure
factor was adjusted to fit S(0) for LJ liquids according to the
equation

S(0) = SPY(0) = (1− η)4/(1 + 2η)2. (S4)

The adjusted PY structure factors were used in the k-
integration as described in the main text. Briefly, we assume
that g0s = θ(r − a), which produces the function

f3(kσs, a/σs) =
1

σ2
s

∫ ∞

a/σs

dx

x3
sin(kσsx). (S5)

Further, one obtains for F (kσs) in eqn (35) in the main text
(z = 1)

F (kσs) =
σ5
s

(4π)2
f2
3 (kσs, a/σs). (S6)
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Figure S2. λind for LJ liquids vs βϵLJ calculated from eqn (S7) with
S(k) fromMC simulations and from PY HS structure factor with the
packing fraction adjusted to match S(0) from simulations (eqn (S4)).

Finally, one obtains for the reorganization energy

λind =
9βe4

ρ∗σ2
s

(
ϵ∞ − 1

ϵ∞ + 2

)2 ∫ ∞

0

F (x)S(x)dx, (S7)

where the integration variable is x = kσs. The results of this
integration are shown in Fig. S2 forσs = 5.4Åand ϵ∞ = 2.12
(parameters for CCl4).
Figure S2 shows the results of integration in eqn (S7) with

S(k) from MC simulations and by using the density-adjusted
PYHS structure factors. The deviation between two sets of re-
sults ranges from 8% at a somewhat unrealistic βϵLJ = 0.125
to 3% at the more realistic βϵLJ ≃ 1− 2.
Equation (S7) can be compared to eqn (45) in the main text

introducing the empirical parameter κ

λind =
3βe4(2z − 1)2

320η
κ

(
ϵ∞ − 1

ϵ∞ + 2

)2
σ3
s

a5
. (S8)

Comparing eqn (S7) to eqn (S8) leads to κ ranging from 0.3
to 0.27 in the entire range of LJ energies simulated here.

III. RESULTS

In terms of the reduced parameters used in the simulation
protocol, the average induction interaction is given as

β⟨V ⟩ = 2πρ∗α∗(z∗)2(σs/a), (S9)

where V =
∑

j αe
2/(2r4j ). As is discussed in the main text,

⟨∆Fe⟩1 = ⟨V ⟩+2λind at z = 1. The induction reorganization
energy is given by the following relation

βλind = (π/10)κ(z∗)4(α∗)2ρ∗(σs/a)
5, (S10)

where the empirical parameter κ describes the reduction from
the full k-integration with the density structure factor S(k) to
the approximation S(k) = κ. This approximation puts S(k)
between its limits S(0) ≪ κ and S(∞) = 1.
The reduced form for the structure factor leading to eqn

(S10) does not affect its dependence on temperature, which

 !"

 !#

 !$

 ! 

%
&'
(
)*
+
,

-! "!."!/"!-"!#"! #!.

$ 
"
012

*345+6&789
*:;'*<=$ >
*:;'*<=$ >*?&@A*8+BB

Figure S3. λind vs 1/T . Solid line shows the numerical integration
using the PY structure factor in eqn (28) in themain text with the step-
function solute-solvent pair distribution function. This calculation is
compared to eqn (S10) with κ = 0.31 and aeff = a (dashed line).
The dash-dotted line shows the same result with aeff calculated from
eqn (S12).

follows the inverse temperature scaling λind ∝ T−1 at a ≃ σs.
This is illustrated in Fig. S3 where the direct numerical inte-
gration of the PY structure factor is compared with eqn (S10)
at the fixed value of κ = 0.31.

IV. EFFECTIVE SOLUTE RADIUS

The effective radius of the solute can be expressed as the in-
tegral with the solute-solvent pair distribution function g0s(r)

a−5
eff = 5

∫ ∞

0

(dr/r6)g0s(r). (S11)

It transforms to the perturbation integral expressed in terms of
the dimensionless distance variable x = r/σs and the reduced
density ρ∗ when the hard-sphere function is used for g0s(r)

a−5
eff = σ−5

s I
(2)
6 (ρ∗, r0s), I

(2)
6 (ρ∗, r0s) = 5

∫ ∞

0

dx

x6
g0s(x).

(S12)
The perturbation integral I(2)6 (ρ∗, r0s) is a function of two
parameters only: the reduced density ρ∗ = ρσ3

s and r0s =
R/σs+1/2. This function was tabulated in Ref. 6 in the form

I
(2)
6 (ρ∗, r0s) =

a(ρ∗)

r50s
+

b(ρ∗)

r60s
+

c(ρ∗)

r70s
+

d(ρ∗)

r80s
. (S13)

The nominators in this expansion are polynomials of the re-
duced density given by the following equations

a(ρ∗) = 1 + 0.586ρ∗ − 1.390(ρ∗)2 + 0.776(ρ∗)3

b(ρ∗) = 1.062ρ∗ + 4.608(ρ∗)2 − 2.964(ρ∗)3

c(ρ∗) = −0.970ρ∗ − 4.134(ρ∗)2 + 3.798(ρ∗)3

d(ρ∗) = 0.241ρ∗ + 1.194(ρ∗)2 − 1.393(ρ∗)3

(S14)
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