Electronic Supplementary Information (ESI)

Prediction of Au₄S crystal via superatom network model: from cluster to solid

By

Qiman Liu,^{‡a} Chengyu Zhang,^{‡a} Chang Xu,^a Shuanglin Hu^{*b} and Longjiu Cheng^{*a,c}

^aDepartment of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China.

^bInstitute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China.

^cAnhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei, Anhui, 230601, P. R. China.

Author Contributions: [‡]These two authors contributed equally to this work.

*Corresponding authors. E-mail: clj@ustc.edu (L.C), hushuanglin@caep.cn (S.H)

Fig. S1 AdNDP localized natural bonding orbitals of the $Au_{22}(\mu_4-S)(SH)_{12}$ cluster.

Five d-type lone pairs on one Au atom (ON=1.93-2.00 |e|)

Fig. S2 SSAdNDP chemical bonding pattern of the Au₄S.

Fig. S3 Electronic band structure of the Au_4S at the PBE level.

Fig. S4 (a) Optimized structure of the Ag₄S crystal with the unit cell. Gray and red spheres represent Ag and S atoms, respectively. (b) Four 4c-2e σ bonding patterns of the Ag₄S using the SSAdNDP method. (c) Calculated phonon dispersion curves along high-symmetry lines in the first Brillouin zone for the Ag₄S.

Fig. S5 (a) Optimized structure of the Cu₄O crystal with the unit cell. Green and yellow spheres represent the Cu and O atoms, respectively. (b) Four 4c-2e σ bonding patterns of the Cu₄O using the SSAdNDP method. (c) Calculated phonon dispersion curves along high-symmetry lines in the first Brillouin zone for the Cu₄O.