Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Supplementary information: S1

A comparative variation of Raman active modes at two different temperature conditions are listed in the table S1. The values exhibit a significant shift for v_2 , v_3 , v_5 and v_6 modes towards lower wave-number (or lower frequency) region, whereas v_1 and v_4 modes are shift towards higher wave-number (or higher frequency) direction. Due to the heat treatment the iodine vacancy was created and the vacancies are occupied by oxygen that forms stronger bismuthoxygen (Bi-O) bond, which alters the BiI₆ octahedra network, as a consequence the modes v_1 and v_4 are shifted. The presence of O²⁻ ion in the lattice makes a weaker the I-I interaction of the iodine molecule (I₂) surrounding the tri-iodide (I³⁻) and on the longer poly-iodide [I-I....I₃...I-I]_n chains, as result the frequency shift was observed for v_2 , v_3 , v_5 and v_6 modes. Broadening effect is more prominent for v_5 and v_6 modes that can be related to the compositional disorder in presence of O²⁻ ion in the lattice.

Table S1: Raman active modes (cm⁻¹) of BiI₃ material, measured at 30 °C and 60 °C.

Modes	v_1	V ₂	V3	V 4	v ₅	ν_6
Raman shift (cm ⁻¹) @ 30 ⁰ C	65.0	93.5	123.2	145.5	245.6	315.2
Raman shift (cm ⁻¹) @ 60 ⁰ C	67.1	91.2	122.2	149.6	232.4	313.5

Figure S1: Deconvoluted Raman spectra @ 60 °C of bismuth iodide.

Supplementary information: S2

The variation of capacitance value with respect to the applied bias that can be expressed by the following relations [ref]:

$$C^{-2} = \frac{2\left(V_d + V\right)}{\left(q\varepsilon\varepsilon_0 A^2 N_d\right)} \tag{1}$$

$$\frac{d(C^{-2})}{dV} = \frac{2}{(q\varepsilon\varepsilon_0 A^2 N_d)}$$
(2)

Where V_d is the diffusion potential extracted from the intercept of C⁻² vs. V plot on the V axis, q is the electronic charge, ε is the dielectric constant of the material, ε_0 is the dielectric constant of the vacuum, A is the contact area and N_d is the carrier concentration of the material.

Supplementary information: S3

The complex electric modulus (M^{*}) spectra were extracted from the complex dielectric constant (ϵ^*) by using the following relations:

$$M^{*} = \frac{1}{(\varepsilon^{*})} = M' + jM''$$

$$M' = \left(\frac{\varepsilon}{\varepsilon'^{2} + \varepsilon''^{2}}\right), \quad M'' = \left(\frac{\varepsilon''}{\varepsilon'^{2} + \varepsilon''^{2}}\right)$$
(5)

Where, M' and M" are the real and imaginary part of electric modulus and ε' and ε'' are the real and imaginary part of dielectric constant respectively.