ARTICLE TYPE

HERFD-XANES probes of electronic structures of iron $^{II/III}$ carbene complexes †

Meiyuan Guo^{*a,b*}, Om Prakash^{*c*}, Hao Fan^{*c*}, Lisa H. M. de Groot^{*c*}, Valtýr Freyr Hlynsson^{*c*}, Simon Kaufhold^{*c*}, Olga Gordivska^{*c*}, Nicolás Velásquez González^{*b*}, Pavel Chabera^{*b*}, Pieter Glatzel^{*d*}, Kenneth Wärnmark^{*c*}, Petter Persson^{*e*}, and Jens Uhlig *^{*b*}

Received Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX First published on the web Xth XXXXXXXX 200X

List of Figures

S 1	The ground-state valence orbitals selected in the active space for $[Fe^{II}(bpy)(btz)_2]^{2+}$, $[Fe^{III}(btz)_3]^{3+}$ and $[Fe^{III}(phtmeimb)_2]^{1+}$.	2
S2	The calculated K pre-edge XAS of $[Fe^{III}(phtmeimb)_2]^{1+}$ with basis set ANO-RCC-MB, ANO-RCC-VDZ and ANO-RCC-VDZP. The 40 core-excited states are included.	3
S3	The spectra calculated with 80 and 120 core-excited states for $[Fe^{II}(bpy)(btz)_2]^{2+}(left), [Fe^{III}(btz)_3]^{3+}(middle)$ and $[Fe^{III}(phtmeimb)_2]^{1+}(right).$	3
S4	The comparison between the RASSCF and RASPT2 spectrum of $[Fe^{III}(phtmeimb)_2]^{1+}$ with 40 core-excited states. RASPT2 calculations have been performed using multi-state (MS) RASPT2 ¹ including all states from the RASSCF calculation. The default ionization-potential electron-affinity shift of 0.25 hartree has been used. ² To reduce problems with intruder states an imaginary shift of 0.3 hartree has been applied throughout the calculations. ³	3
S5	The experimental iron full HERFD-XAS spectra of $[Fe^{II}(bpy)(btz)_2](PF_6)_2$, $[Fe^{III}(btz)_3](PF_6)_3$ and $[Fe^{III}(phtmeimb)_2]PF_6$. The data was normalized to one at 7129.3 eV. The normalization can have an effect on the relative height of the pre-edge features. From the statistical error size and precision with which we can estimate this normalization factor we estimate that this procedure adds approximately 1% of the measured signal at this position to the error. In this plot we give the 2- σ error marginals as derived from the combination of	
S6	statistical fluctuation or the measurement/shot noise and the above mentioned estimated normalization error The peak fitting for the metal K edge XAS in the energy range from 7110 to 7120 eV. Fitting of K pre-edge features was performed using the EDG-FIT module of the EXAFSPAK suite using pseudo-Voigt line shapes with a fixed 50:50 ratio of Lorentzian to Gaussian functions where the peak positions, width and intensities were	4
	varied.	4

† Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

^a College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.

References

- 1 P. Å. Malmqvist, K. Pierloot, A. R. M. Shahi, C. J. Cramer and L. Gagliardi, *J. Chem. Phys.*, 2008, **128**, 204109.
- 2 G. Ghigo, B. O. Roos and P.-Å. Malmqvist, *Chem. Phys. Lett*, 2004, **396**, 142–149.
- 3 N. Forsberg and P.-Å. Malmqvist, *Chem. Phys. Lett*, 1997, **274**, 196–204.

^{*}Corresponding E-mail: jens.uhlig@chemphys.lu.se

^bDivision of Chemical Physics, Chemical Center, Lund University, SE-221 00 Lund, Sweden.

^cCenter for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, SE-22100 Lund, Sweden

^d European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France

^eDivision of Theoretical Chemistry, Chemical Center, Lund University, SE-221 00 Lund, Sweden

[FeIII(btz)₃]³⁺-GS-Orb

Fig. S1 The ground-state valence orbitals selected in the active space for $[Fe^{II}(bpy)(btz)_2]^{2+}$, $[Fe^{III}(btz)_3]^{3+}$ and $[Fe^{III}(phtmeimb)_2]^{1+}$.

Fig. S2 The calculated K pre-edge XAS of $[Fe^{III}(phtmeimb)_2]^{1+}$ with basis set ANO-RCC-MB, ANO-RCC-VDZ and ANO-RCC-VDZP. The 40 core-excited states are included.

Fig. S3 The spectra calculated with 80 and 120 core-excited states for $[Fe^{II}(bpy)(btz)_2]^{2+}(left), [Fe^{III}(btz)_3]^{3+}(middle)$ and $[Fe^{III}(phtmeimb)_2]^{1+}(right)$.

Fig. S4 The comparison between the RASSCF and RASPT2 spectrum of $[Fe^{III}(phtmeimb)_2]^{1+}$ with 40 core-excited states. RASPT2 calculations have been performed using multi-state (MS) RASPT2¹ including all states from the RASSCF calculation. The default ionization-potential electron-affinity shift of 0.25 hartree has been used.² To reduce problems with intruder states an imaginary shift of 0.3 hartree has been applied throughout the calculations.³

This journal is © The Royal Society of Chemistry [year]

Fig. S5 The experimental iron full HERFD-XAS spectra of $[Fe^{II}(bpy)(btz)_2](PF_6)_2$, $[Fe^{III}(btz)_3](PF_6)_3$ and $[Fe^{III}(phtmeimb)_2]PF_6$. The data was normalized to one at 7129.3 eV. The normalization can have an effect on the relative height of the pre-edge features. From the statistical error size and precision with which we can estimate this normalization factor we estimate that this procedure adds approximately 1% of the measured signal at this position to the error. In this plot we give the 2- σ error marginals as derived from the combination of statistical fluctuation or the measurement/shot noise and the above mentioned estimated normalization error.

Fig. S6 The peak fitting for the metal K edge XAS in the energy range from 7110 to 7120 eV. Fitting of K pre-edge features was performed using the EDG-FIT module of the EXAFSPAK suite using pseudo-Voigt line shapes with a fixed 50:50 ratio of Lorentzian to Gaussian functions where the peak positions, width and intensities were varied.