

Supplementary Information

Vibrational Mode Frequency Correction of Liquid Water in Density Functional Theory Molecular Dynamics Simulations with van der Waals Correction

Kai Zhong,^{1,2} Chun-Chieh Yu,² Mayank Dodia,² Mischa Bonn,² Yuki Nagata,^{2,} and Tatsuhiko Ohto³*

1. Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
2. Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
3. Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

* Email: nagata@mpip-mainz.mpg.de, ohto@melectronics.jp

Contents:

1. Convergence check for VDOS spectra
2. Decomposition of the O-D stretch spectra
3. Simulated IR spectra for D₂O
4. Validity of the frequency scale for stretch and bending modes between H₂O and D₂O

1. Convergence check for VDOS spectra

We calculated the VDOS spectra with the revPBE-D3(0) level of theory with split trajectories into two equal parts. (Figure S1). The data show that the intensities for these spectra are slightly different, while the center mass of frequencies for the O-D stretch and D-O-D bending modes are completely the same (2530 cm^{-1} and 1204 cm^{-1} , respectively). This indicates that the results are rather independent on the initial configurations and each sub-trajectory has sampled sufficient water configurations.

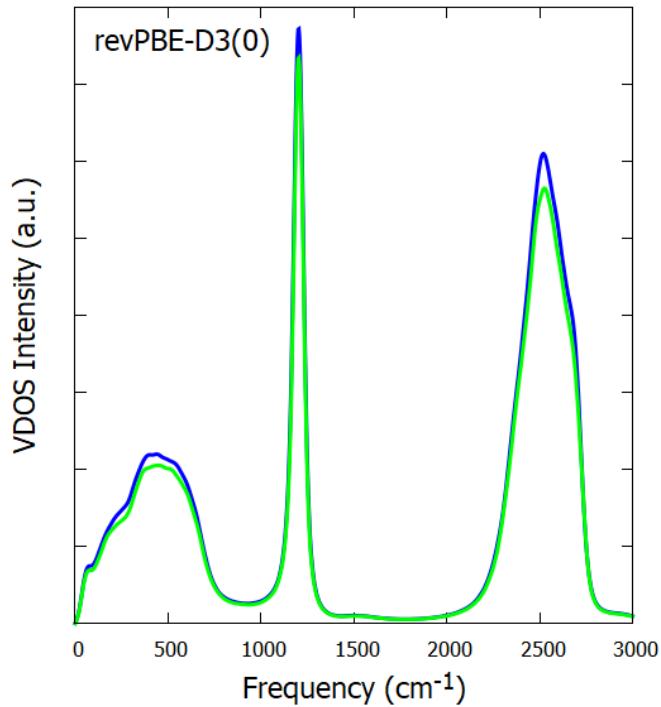


Figure S1. The VDOS spectra calculated with the half of trajectories with the revPBE-D3(0) level of theory. The blue and green lines are obtained by the first and second half trajectories, respectively.

2. Decomposition of the O-D stretch spectra

Decomposed VDOS spectra obtained from the rest of the DFT methods are shown in Figure S2.

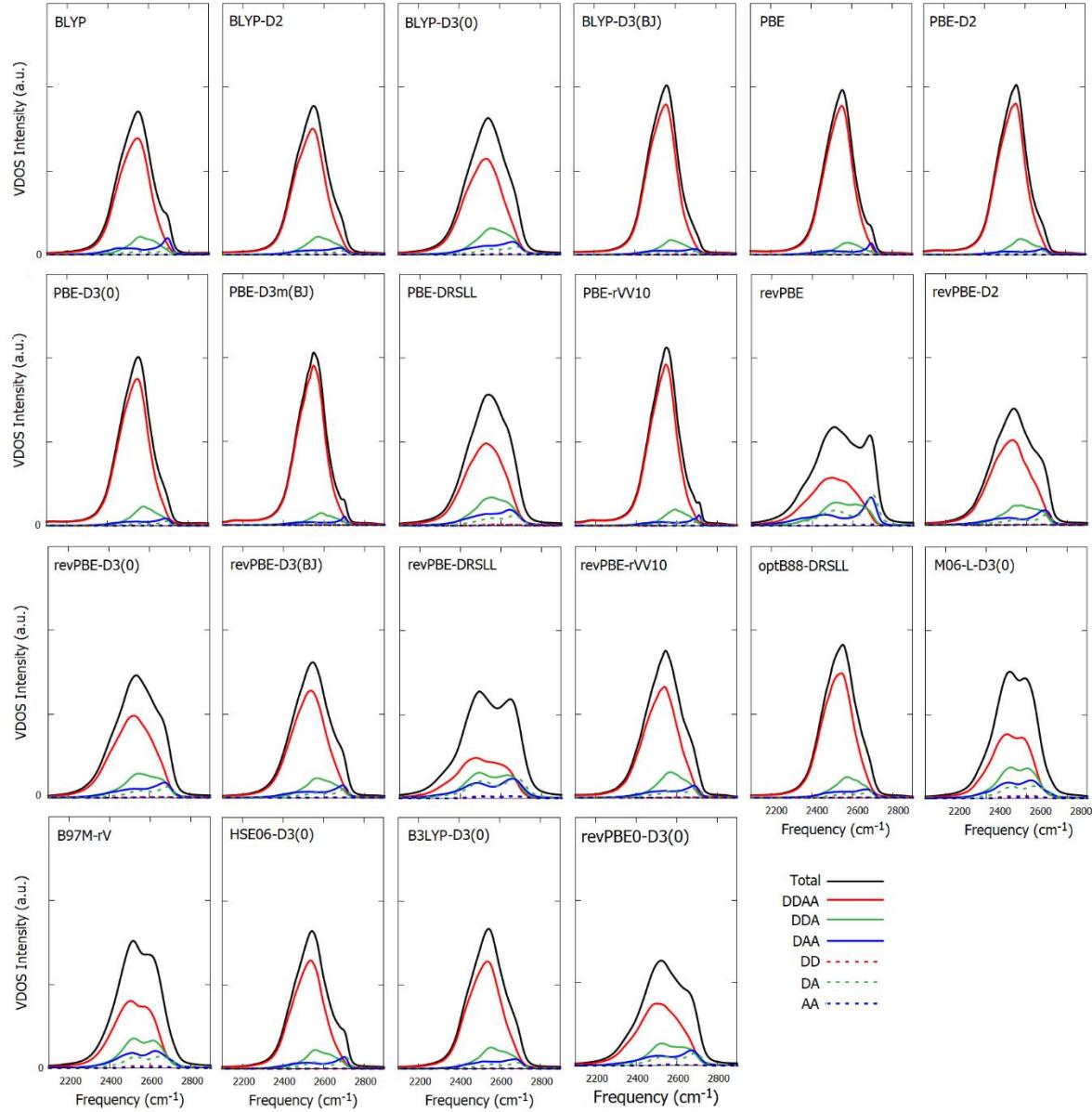


Figure S2. Decomposed VDOS spectra for the O-D stretch mode of D_2O calculated with various DFT methods.

3. Simulated IR spectra for D₂O

The simulated IR spectra for D₂O are shown in Figure S3. The simulated IR spectra for D₂O with revPBE0-D3(0) functional is obtained from Ref. 1 with scaling H₂O spectrum by the factor of 0.735,² and the simulated IR spectra for D₂O with SCAN functional is obtained from Ref. 3. The simulated IR spectra for D₂O with POLI2VS model is obtained from Ref. 4 with scaling H₂O spectrum by the factor of 0.735.² The POLI2VS model does not account for nuclear quantum effects.⁴ Thus, we scaled the frequency axis with a factor of 0.96 for both the O-D stretch and the D-O-D bending modes.⁵

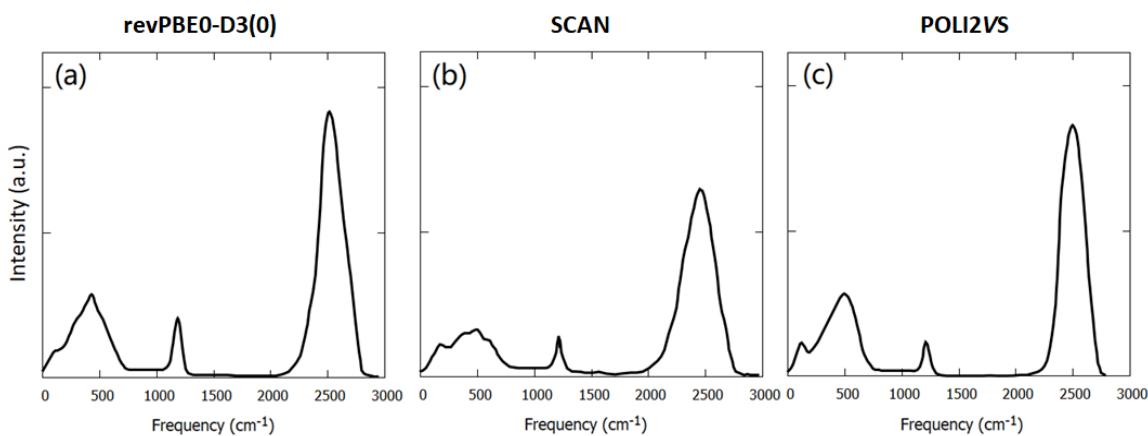


Figure S3. IR spectra for D₂O (a) at the revPBE0-D3(0) level of theory¹ (b) at the SCAN level of theory³ (c) with the POLI2VS model of D₂O.⁴

4. Validity of the frequency scale for stretch and bending modes between H₂O and D₂O

The vibrational frequency is drastically changed upon isotope dilution. The correspondence of the O-H stretch mode of H₂O and O-D stretch mode of D₂O has been checked and it turned out that the scale factor of 0.735 provides the best frequency match between O-H and O-D stretch mode.^{6,7}

For the H-O-H bending mode, we measured the IR spectra of H₂O and D₂O. The H₂O data has a peak centered at 1650 cm⁻¹. By scaling the frequency axis of the H₂O data, we

compared it with the D₂O data. As shown in Figure S4, the spectrum of the H-O-H bending mode shows large overlap with that of the D-O-D bending mode after scaling the frequency axis with the factor of 0.735. This demonstrates that the scale factor can be used for transferring the information on the D-O-D bending mode to the H-O-H bending mode.

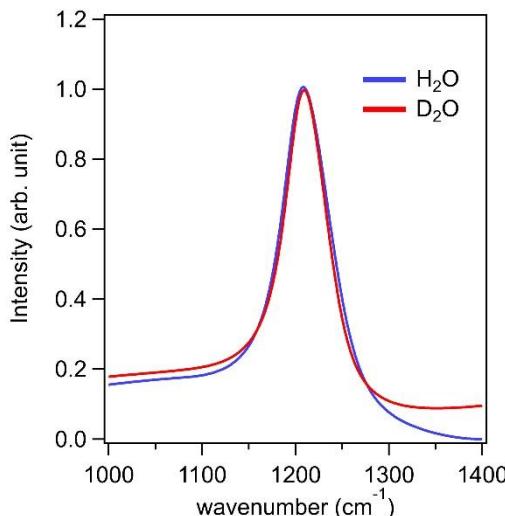


Figure S4. The FTIR spectra of H₂O and D₂O. Both of the spectra were normalized at the peak maximum. The frequency axis of the H₂O spectrum is scaling with the factor of 0.735.

REFERENCES

- (1) Marsalek, O.; Markland, T. E. Quantum Dynamics and Spectroscopy of Ab Initio Liquid Water: The Interplay of Nuclear and Electronic Quantum Effects. *J. Phys. Chem. Lett.* **2017**, *8*, 1545–1551.
- (2) Matt, S. M.; Ben-Amotz, D. Influence of Intermolecular Coupling on the Vibrational Spectrum of Water. *J. Phys. Chem. B* **2018**, *122*, 5375–5380.
- (3) Xu, J.; Chen, M.; Zhang, C.; Wu, X. First-Principles Study of the Infrared Spectrum in

Liquid Water from a Systematically Improved Description of H-Bond Network. *Phys. Rev. B* **2019**, *99*, 205123.

- (4) Hasegawa, T.; Tanimura, Y. A Polarizable Water Model for Intramolecular and Intermolecular Vibrational Spectroscopies. *J. Phys. Chem. B* **2011**, *115*, 5545–5553.
- (5) Nagata, Y.; Hasegawa, T.; Backus, E. H. G.; Usui, K.; Yoshimune, S.; Ohto, T.; Bonn, M. The Surface Roughness, but Not the Water Molecular Orientation Varies with Temperature at the Water–Air Interface. *Phys. Chem. Chem. Phys.* **2015**, *17*, 23559–23564.
- (6) Xu, X.; Shen, Y. R.; Tian, C. Phase-Sensitive Sum Frequency Vibrational Spectroscopic Study of Air/Water Interfaces: H₂O, D₂O, and Diluted Isotopic Mixtures. *J. Chem. Phys.* **2019**, *150*, 144701.
- (7) Venyaminov, S. Y.; Prendergast, F. G. Water (H₂O and D₂O) Molar Absorptivity in the 1000-4000 cm⁻¹ Range and Quantitative Infrared Spectroscopy of Aqueous Solutions. *Anal. Biochem.* **1997**, *248*, 234–245.