Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Supporting Information

Enhanced Moisture Stability of Cesium Lead Iodide Perovskite Solar cells- A First-Principles Molecular Dynamics Study

Dhana Lakshmi Busipalli, Kuan-Yu Lin, Santhanamoorthi Nachimuthu,* and Jyh-Chiang Jiang*

Department of Chemical Engineering, National Taiwan University of Science and

Technology, Taipei 106, Taiwan, R.O.C.

* Corresponding authors: <u>santhanamoorthi@gmail.com</u> (SN), <u>jcjiang@mail.ntust.edu.tw</u> (JCJ) Telephone: +886-2-27376653. Fax: +886-2-27376644.

Computational Details:

All the periodic DFT calculations were performed by using the Vienna Ab-initio Simulation Package (VASP). Here we considered the cubic CH₃NH₃PbI₃ perovskites for comparison. For CH₃NH₃PbI₃ perovskite, the optimized geometrical structure we choose from our previous study.¹ All calculations were performed by using the Generalized Gradient Approximation (GGA), as implemented by Perdew-Burke-Ernzerhof (PBE), was selected for the exchange-correlation functional. The projected augmented wave (PAW) method was employed to describe the electron-ion interaction. The convergence criterion was set to a 10⁻⁴ eV change in the energy during the geometry optimization iteration and the force on each atom is smaller than 0.01 eV/Å. The Brillion zone integrations were performed with $4 \times 4 \times 4$ and $3 \times 3 \times 1$ Monkhorst-Pack k-point grid for bulk and (100) surface calculations, respectively. We have added 15 Å for vacuum region for the simulation of the surface. A plane-wave basis set of 400 eV energy cut-off was adopted in all calculations. AIMD simulations were conducted under constant-volume and constant-temperature (NVT) conditions. Nose-Hoover thermostats were used and the temperature was set as 400 K. The total simulation time extended up of 10 ps and the time step of the integration of the dynamic equation was set to 1 fs. The Brillouin zone was sampled by using a Monkhorst-Pack grid with $2 \times 2 \times 1$ for AIMD simulations.

Fig. S1. The optimized geometrical structures of a) Top and b) Side views of γ-CsPbI₃ perovskite (Color coding: purple, I; gray, Pb; cyan,
Cs).

Fig. S2. The projected density of states (PDOS) of the γ -CsPbI₃ perovskite.

Fig. S3. Calculated band structure for the γ -CsPbI₃ perovskite.

Fig. S4. Optimized slab model for CH₃NH₃I-terminated CH₃NH₃PbI₃ (100) surface (a) the side view, and (b) top view (Color coding: purple, I; gray, Pb; brown, C; blue, nitrogen, N; pink, H).

Fig. S5. The optimized geometrical structures of water adsorbed on (d) I-site, (e) CH_3NH_3 -site and (f) hollow site of CH_3NH_3I -terminated $CH_3NH_3PbI_3$ (100) surfaces.

Fig. S6. (a) Evolution of the distances between Pb-I atoms with time variation, and (a) Side view of snapshots from the AIMD simulations of CH₃NH₃I-terminated surface at different simulation times.

Fig. S7. (a) Evolution of the distances between Pb-I atoms with time variation, and (a) Side view of snapshots from the AIMD simulations with the H_2O molecule on the CH_3NH_3I -terminated surface at different simulation times.

Fig. S8. The configuration of the CH₃NH₃I-terminated CH₃NH₃PbI₃ (100) surface at the end of simulation time.

Fig. S9. Top view of snapshots from the AIMD simulations with two water molecules on the CsI-terminated γ -CsPbI₃ (220) surface at different simulation times.

Fig. S10. Top view of snapshots from the AIMD simulations with the water dimer on the CsI-terminated γ -CsPbI₃(220) surface at different simulation times.

Fig. S11. Evolution of the distances between the lead and the iodine atoms for the water monomer adsorbed on the CsI-terminated CsPbI₃ (220) surface at different simulation times.

Fig. S12. Evolution of the distances between the lead and the iodine atoms for the water dimer adsorbed on the CsI-terminated CsPbI₃ (220) surface at different simulation times.

	a	b	c
PBE	9.0674 (2.4%)	8.7576 (2.1%)	12.6777 (1.6%)
PW91	9.0697 (2.4%)	8.7405 (1.9%)	12.6741 (1.6%)
RPBE	9.2156 (4.1%)	9.0539 (5.6%)	13.0032 (4.3%)
Exp. ²	8.8561	8.5766	12.4722

Table S1. The calculated lattice parameters (in Å) of the γ -CsPbI₃ structure using different functionals along with the experimental values.

Data in parentheses refer to the percentage of deviation with respect to the experimental values.

Cutoff energy (eV)	a	b	c
300	9.0602 (2.3%)	8.7464 (2.0%)	12.6714 (1.6%)
400	9.0674 (2.4%)	8.7576 (2.1%)	12.6777 (1.6%)
500	9.0694 (2.4%)	8.7480 (2.0%)	12.6813 (1.7%)
600	9.0625 (2.3%)	8.7525 (2.1%)	12.6775 (1.6%)
Exp. ²	8.8561	8.5766	12.4722

Table S2. The calculated lattice parameters (in Å) of the γ -CsPbI₃ structure using PBE functional with different cutoff energies along with the experimental values.

Data in parentheses refer to the percentage of deviation with respect to the experimental values.

	Calculated	Experimental
CsPb1 ₃	Band gap (eV)	Band gap (eV)
δ - phase	2.76	2.82 ^{3, 4}
γ - phase	1.86	1.695
α - phase	1.53	1.73 ^{6, 7}

Table S3. The calculated band gaps (in eV) of CsPbI₃ Perovskite, compared with available experimental results.

γ-CsPbI ₃ (220)		δ -CsPbI ₃ (212)	
Surface Termination	Surface Energy (eV/Å ²)	Surface Termination	Surface Energy (eV/Å ²)
I-termination	0.073	I-termination	0.048
Cs-termination	0.038	I-rich termination	0.062
PbI ₂ -termination	0.030	Pb-termination	0.059
CsI-termination	0.027	Cs-termination	0.065
PbI ₂ -defective termination	0.066	CsI-termination 1	0.057
PbI ₂ -rich defective termination	0.054	CsI-termination 2	0.064
CsI-defective termination	0.032	PbI ₂ -termination	0.051
I-rich termination	0.106	PbI ₂ -rich termination	0.056

Table S4. The calculated surface energies for the different terminations of γ -phase CsPbI₃ (220) and δ -phase CsPbI₃(212) surfaces.

Site	Structural Parameters		
Site	d _{O-Ha} (Å)	$d_{O-Hb}(Å)$	\angle H-O-H(degree)
Cs-site	0.973	0.974	104.70
I-site	0.981	0.973	104.67
Hollow site	0.980	0.973	104.25

Table S5. The calculated structural parameters (interatomic bond lengths and angle) of water molecule adsorbed on the γ -CsPbI₃(220) surface.

Reference:

- 1. D. L. Busipalli, S. Nachimuthu and J. C. Jiang, J. Chin. Chem. Soc., 2019, 66, 575-582.
- 2. R. J. Sutton, M. R. Filip, A. A. Haghighirad, N. Sakai, B. Wenger, F. Giustino and H. J. Snaith, *ACS Energy Lett.*, 2018, **3**, 1787-1794.
- 3. G. E. Eperon, G. M. Paterno, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli and H. J. Snaith, *J. Mater. Chem. A*, 2015, **3**, 19688-19695.
- 4. B. Y. Zhao, S. F. Jin, S. Huang, N. Liu, J. Y. Ma, D. J. Xue, Q. W. Han, J. Ding, Q. Q. Ge, Y. Q. Feng and J. S. Hu, *J. Am. Chem. Soc.*, 2018, **140**, 11716-11725.
- 5. K. Wang, Z. W. Jin, L. Liang, H. Bian, D. L. Bai, H. R. Wang, J. R. Zhang, Q. Wang and S. Z. Liu, *Nat. Commun*, 2018, **9**, 4544.
- 6. A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti and J. M. Luther, *Science*, 2016, **354**, 92-95.
- 7. C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, *lnorg. Chem.*, 2013, **52**, 9019-9038.