Electronic Supplementary Information

Excited state hydrogen transfer dynamics in phenol-(NH₃)₂ studied by picosecond UV-near IR-UV time-resolved spectroscopy

Shun-ichi Ishiuchi^a), Junko Kamizori^a), Norihiro Tsuji^a), Makoto Sakai^a)[†], Mitsuhiko Miyazaki^a)[#]*, Claude Dedonder^c), Christophe Jouvet^{b, c})*, and Masaaki Fujii^{a, b})*

^aLaboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1-15, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.

^bWorld Research Hub Initiatives, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1-15, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.

^cCNRS, Aix Marseille Université, Physique des Interactions Ioniques et Moleculaires (PIIM) UMR 7345, 13397 Marseille cedex, France.

[†]present address: Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama-shi 700-0005, Japan.

[#]present address: Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan.

Corresponding authors: MM (miyazaki.mitsuhiko@ocha.ac.jp), CJ (christophe.jouvet@univ-amu.fr), and MF (mfujii@res.titech.ac.jp)

Contents

1. Solution of the differential equation for the proposed reaction scheme

1. Solution of the differential equation for the proposed reaction scheme

Here we define amounts of species concerning to the ESHT reaction of the PhOH–(NH₃)₂ cluster as follows, $[R] \equiv [PhOH^* - (NH_3)_2](t),$ $[P] \equiv [\cdot NH_4NH_3](t),$ $[X] \equiv [Intermediate, X](t).$

When the ESHT reaction proceeds according to the reaction scheme proposed in the main text, time-changes in the related species are represented by the following differential equations:

$$\frac{d[R]}{dt} = -(k_1 + k_2)[R] \qquad (S1),$$
$$\frac{d[X]}{dt} = k_2[R] - k_3[X] \qquad (S2),$$
$$\frac{d[P]}{dt} = k_1[R] + k_3[X] \qquad (S3).$$

The Laplace transformation of equation (S1)–(S3) transforms them into equations (S4)–(S6) as follows:

$$\begin{split} sL\{[R]\} &- [R]_0 = - \left(k_1 + k_2\right) L\{[R]\} & (S4), \\ sL\{[X]\} &- [X]_0 = k_2 L\{[R]\} - k_3 L\{[X]\} & (S5), \\ sL\{[P]\} &- [P]_0 = k_1 L\{[R]\} + k_3 L\{[X]\} & (S6), \end{split}$$

where $L\{[\Omega]\}$ and $[\Omega]_0$ represent the Laplace transformation and initial amount of $[\Omega]$, respectively. Since $[X]_0 = 0$ and $[P]_0 = 0$, the equations (S4)–(S5) reduce to

$$\begin{split} sL\{[R]\} &- [R]_0 = - \left(k_1 + k_2\right) L\{[R]\} & (S4)' \\ sL\{[X]\} &= k_2 L\{[R]\} - k_3 L\{[X]\} & (S5)', \\ sL\{[P]\} &= k_1 L\{[R]\} + k_3 L\{[X]\} & (S6)'. \end{split}$$

The equations (S4)'–(S6)' can be solved about $L\{[\Omega]\}$ as follows:

$$L\{[R]\} = \frac{[R]_0}{(k_1 + k_2 + s)}$$
(S7),
$$L\{[X]\} = \frac{k_2[R]_0}{(k_1 + k_2 + s)(k_3 + s)}$$
(S8),
$$L\{[X]\} = \frac{((k_1 + k_2)k_3 + k_1s)k_2[R]_0}{s(k_1 + k_2 + s)(k_3 + s)}$$
(S9)

Partial fraction decomposition of equations (S7)–(S9) gives:

$$L\{[R]\} = \frac{[R]_0}{(k_1 + k_2 + s)}$$

$$L\{[X]\} = \frac{k_2[R]_0}{(k_1 + k_2 - k_3)} \left(\frac{1}{(k_3 + s)} - \frac{1}{(k_1 + k_2 + s)}\right)$$

$$L\{[X]\} = [R]_0 \left(\frac{1}{s} - \frac{(k_1 - k_3)k_2}{(k_1 + k_2 - k_3)(k_1 + k_2 + s)} - \frac{k_2}{(k_1 + k_2 - k_3)(k_3 + s)}\right)$$
(S9).

The inverse Laplace transformation of equations (S7)'-(S9)' recovers $[\Omega]$ as follows:

$$[R] = [R]_{0}e^{-(k_{1}+k_{2})t}$$
(S10),

$$[X] = [R]_{0}\frac{k_{2}}{(k_{1}+k_{2}-k_{3})}(e^{-k_{3}t}-e^{-(k_{1}+k_{2})t})$$
(S11),

$$[P] = [R]_{0}\left(\frac{k_{1}-k_{3}}{k_{1}+k_{2}-k_{3}}\left(1-e^{-(k_{1}+k_{2})t}\right)+\frac{k_{2}}{k_{1}+k_{2}-k_{3}}\left(1-e^{-k_{3}t}\right)\right)$$
(S12).

Thus, the time evolutions are expressed in double exponential functions. The equation (S12) is used as the equation (1) in the main text, where $[R]_0$ is replaced by A to change the absolute amount of $[R]_0$ to the signal intensity. In the fitting procedure, convoluted forms of the functions by a Gaussian function that represents the instrumental function were used.