
Electronic Supplementary Information

Excited state hydrogen transfer dynamics in phenol–(NH3)2 studied by picosecond UV-near IR-UV 
time-resolved spectroscopy

Shun-ichi Ishiuchia), Junko Kamizoria), Norihiro Tsujia), Makoto Sakaia)†, Mitsuhiko Miyazakia)#*, Claude 
Dedonderc), Christophe Jouvetb, c)*, and Masaaki Fujiia, b)*

aLaboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of 
Technology, 4259-R1-15, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.

bWorld Research Hub Initiatives, Institute of Innovative Research, Tokyo Institute of Technology, 4259-
R1-15, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.

cCNRS, Aix Marseille Université, Physique des Interactions Ioniques et Moleculaires (PIIM) UMR 7345, 
13397 Marseille cedex, France.

†present address: Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 
Ridaicho, Kita-ku, Okayama-shi 700-0005, Japan.

#present address: Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Ohtsuka, 
Bunkyo-ku, Tokyo, 112-8610, Japan.

Corresponding authors: MM (miyazaki.mitsuhiko@ocha.ac.jp), CJ (christophe.jouvet@univ-amu.fr), and 
MF (mfujii@res.titech.ac.jp)

Contents
1. Solution of the differential equation for the proposed reaction scheme

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2020



1. Solution of the differential equation for the proposed reaction scheme

Here we define amounts of species concerning to the ESHT reaction of the PhOH–(NH3)2 cluster as follows,
[𝑅] ≡ [𝑃ℎ𝑂𝐻 ∗ ‒ (𝑁𝐻3)2](𝑡),
[𝑃] ≡ [ ∙ 𝑁𝐻4𝑁𝐻3](𝑡),      

[𝑋] ≡ [𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒, 𝑋](𝑡). 

When the ESHT reaction proceeds according to the reaction scheme proposed in the main text, time-changes 
in the related species are represented by the following differential equations:

𝑑[𝑅]
𝑑𝑡

=‒ (𝑘1 + 𝑘2)[𝑅]        (𝑆1),

𝑑[𝑋]
𝑑𝑡

= 𝑘2[𝑅] ‒ 𝑘3[𝑋]        (𝑆2),

𝑑[𝑃]
𝑑𝑡

= 𝑘1[𝑅] + 𝑘3[𝑋]        (𝑆3).

The Laplace transformation of equation (S1)–(S3) transforms them into equations (S4)–(S6) as follows:
𝑠𝐿{[𝑅]} ‒ [𝑅]0 =‒ (𝑘1 + 𝑘2)𝐿{[𝑅]}          (𝑆4),
𝑠𝐿{[𝑋]} ‒ [𝑋]0 = 𝑘2𝐿{[𝑅]} ‒ 𝑘3𝐿{[𝑋]}        (𝑆5),
𝑠𝐿{[𝑃]} ‒ [𝑃]0 = 𝑘1𝐿{[𝑅]} + 𝑘3𝐿{[𝑋]}        (𝑆6),

where  and  represent the Laplace transformation and initial amount of , respectively. Since 𝐿{[Ω]} [Ω]0 [Ω]

 and , the equations (S4)–(S5) reduce to [𝑋]0 = 0 [𝑃]0 = 0

𝑠𝐿{[𝑅]} ‒ [𝑅]0 =‒ (𝑘1 + 𝑘2)𝐿{[𝑅]}          (𝑆4)',
𝑠𝐿{[𝑋]} = 𝑘2𝐿{[𝑅]} ‒ 𝑘3𝐿{[𝑋]}              (𝑆5)',
𝑠𝐿{[𝑃]} = 𝑘1𝐿{[𝑅]} + 𝑘3𝐿{[𝑋]}              (𝑆6)'.

The equations (S4)ʹ–(S6)ʹ can be solved about  as follows:𝐿{[Ω]}

𝐿{[𝑅]} =
[𝑅]0

(𝑘1 + 𝑘2 + 𝑠)
                    (𝑆7),

𝐿{[𝑋]} =
𝑘2[𝑅]0

(𝑘1 + 𝑘2 + 𝑠)(𝑘3 + 𝑠)
             (𝑆8),

𝐿{[𝑋]} =
((𝑘1 + 𝑘2)𝑘3 + 𝑘1𝑠)𝑘2[𝑅]0

𝑠(𝑘1 + 𝑘2 + 𝑠)(𝑘3 + 𝑠)
         (𝑆9).

Partial fraction decomposition of equations (S7)–(S9) gives:

𝐿{[𝑅]} =
[𝑅]0

(𝑘1 + 𝑘2 + 𝑠)
                                               (𝑆7)',

𝐿{[𝑋]} =
𝑘2[𝑅]0

(𝑘1 + 𝑘2 ‒ 𝑘3)( 1
(𝑘3 + 𝑠)

‒
1

(𝑘1 + 𝑘2 + 𝑠))                       (𝑆8)',

𝐿{[𝑋]} = [𝑅]0(1
𝑠

‒
(𝑘1 ‒ 𝑘3)𝑘2

(𝑘1 + 𝑘2 ‒ 𝑘3)(𝑘1 + 𝑘2 + 𝑠)
‒

𝑘2

(𝑘1 + 𝑘2 ‒ 𝑘3)(𝑘3 + 𝑠))    (𝑆9)'.



The inverse Laplace transformation of equations (S7)ʹ–(S9)ʹ recovers  as follows:[Ω]

[𝑅] = [𝑅]0𝑒
‒ (𝑘1 + 𝑘2)𝑡

                                              (𝑆10),

[𝑋] = [𝑅]0

𝑘2

(𝑘1 + 𝑘2 ‒ 𝑘3)
(𝑒

‒ 𝑘3𝑡
‒ 𝑒

‒ (𝑘1 + 𝑘2)𝑡
)                        (𝑆11),

[𝑃] = [𝑅]0( 𝑘1 ‒ 𝑘3

𝑘1 + 𝑘2 ‒ 𝑘3
(1 ‒ 𝑒

‒ (𝑘1 + 𝑘2)𝑡) +
𝑘2

𝑘1 + 𝑘2 ‒ 𝑘3
(1 ‒ 𝑒

‒ 𝑘3𝑡))   (𝑆12).

Thus, the time evolutions are expressed in double exponential functions. The equation (S12) is used as the 

equation (1) in the main text, where  is replaced by  to change the absolute amount of  to the signal [𝑅]0 𝐴 [𝑅]0

intensity. In the fitting procedure, convoluted forms of the functions by a Gaussian function that represents the 
instrumental function were used. 


