Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Supporting Information for

Understanding the unorthodox stabilization of Liquid Phase Exfoliated Molybdenum Disulfide (MoS₂) in water medium

Camila L.C. Rodriguez,^a Pablo A. R. Muñoz, ^a Leandro Seixas, ^a Katarzyna Z. Donato,^{a,b}

Ricardo. K. Donato^{* a,b} and Guilhermino J. M. Fechine.*

^a MackGraphe - Mackenzie Institute for Research in Graphene and Nanotechnologies,

Mackenzie Presbyterian University, Rua da Consolação, 896, São Paulo, SP 01302-907,

Brazil

^b Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.

*Corresponding authors: <u>donato@imc.cas.cz; guilherminojmf@mackenzie.br</u>

Contents

Fig. S1 Raman spectroscopy of MoS_2 dispersions produced with different sonication times

Fig. S2 Scanning Electronic Microscopy (SEM) raw of MoS₂

Fig. S3 Scanning Electronic Microscopy (SEM) MoS₂ nanosheets after LPE in Ac

Fig. S4 Scanning Electronic Microscopy (SEM) MoS₂ nanosheets after LPE in H₂O

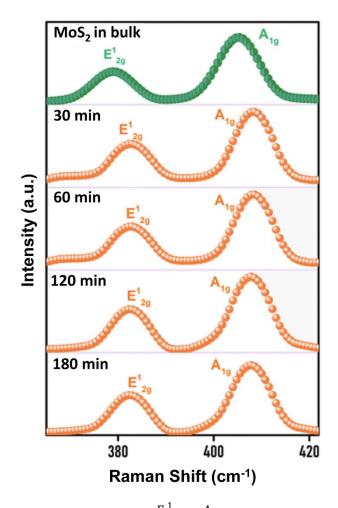


Fig. S1 Raman spectra of MoS₂ vibrational modes E_{2g}^1 and A_{1g} present in H₂O dispersions produced with different sonication times.

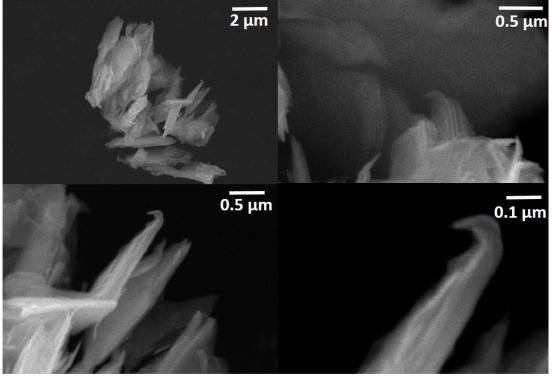


Fig. S2 Morphological characterization raw of MoS_2 in different magnifications (scale bars 2.0, 0.5 and 0.1 μ m) where is possible to observe the crystal layers.

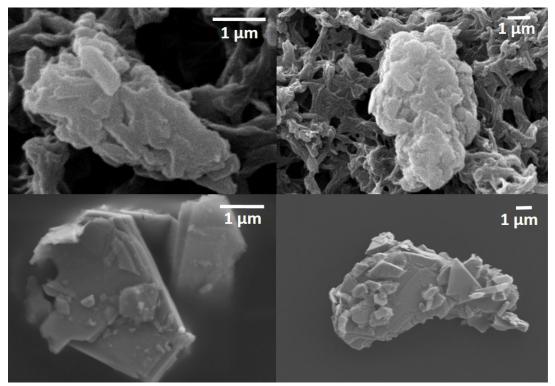


Fig. S3. Morphological characterization after LPE in Ac, these images shown the significantly damage of the MoS_2 crystals edges.

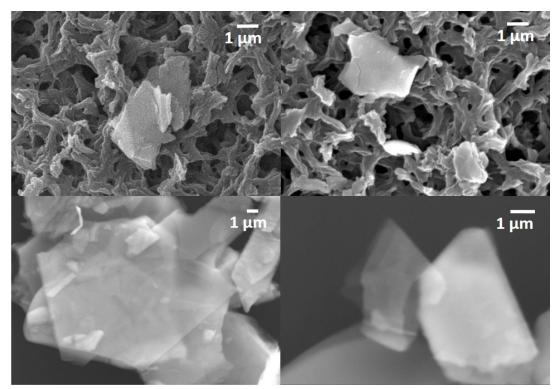


Fig. S4 Morphological characterization after LPE in H_2O . These images suggest that bulk MoS_2 particles are successfully exfoliated and substantially fragmented.