Supplementary Information for

Edge Functionalized Graphene Nanoribbons with Tunable Band Edges for Carrier Transport Interlayer in Organic-Inorganic Perovskite Solar Cells

Eun Mi Kim^a, Saqib Javaid^{a,b}, Geunsik Lee^{a,*}

^aDepartment of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.

^bEMMG, Physics Division, PINSTECH, P.O. Nilore, Islamabad, Pakistan

*E-mail: gslee@unist.ac.kr

Supplementary Fig. 1 Conduction band edge and valence band edge levels relative to the vacuum level by varying the size of width from 5 to 10 in F-GNR. Red and blue lines indicate the supercells enlarged by 6 times and 3 times, respectively.

Supplementary Fig. 2 Probability of Pb and I atomic orbitals in clean MAPbI₃(001) slab and extracted main peaks of occupied and empty surface states with the contribution greater than 50%.

Supplementary Fig. 3 Probability of Pb and I atomic orbitals against the energy levels relative to electrostatic potential. Yellow and black arrows indicate main peaks of surface states for each heterostructure.

Supplementary Fig. 4 Electrostatic potential of each clean MAPbI₃(001) slab, {H,F}-GNR@MAPbI₃(001) along the z-direction.

Figure S5. PBE band structures of H-GNR@MAPbI₃(001) with the lattice constant adjusted to (a) MAPbI₃(001) and (b) of H-GNR. The energy levels are in reference with the average electrostatic potential at the center layers. The orbital contributions of Pb, I atoms at the surface layer and C atoms at the ribbon, denoted by the blue, red and magenta open circles, respectively.

Figure S6. PBE band structures of F-GNR@MAPbI₃(001) with the lattice constant adjusted to (a) MAPbI₃(001) and (b) of F-GNR. The energy levels are in reference with the average electrostatic potential at the center layers. The orbital contributions of Pb, I atoms at the surface layer and C atoms at the ribbon, denoted by the blue, red and magenta open circles, respectively.

Table S1. Band edge levels (eV) by PBE for H-GNR@MAPbI₃(001) as indicated by the arrows in Figure S5, and the variation ($\Delta \epsilon$) caused by the strain.

H-GNR@MAPbI ₃ (001)	$a^{\text{het}} = 12.45 \text{ Å}$	$a^{\text{het}} = 12.78 \text{ Å}$	Δε
FSS of MAPbI ₃ (001)	1.25	1.15	-0.10
ESS of MAPbI ₃ (001)	3.35	3.30	-0.05
VBM of H-GNR	2.05	2.00	-0.05
CBM of H-GNR	3.65	3.50	-0.15

Table S2. Band edge levels (eV) by PBE for F-GNR@MAPbI₃(001) as indicated by the arrows in Figure S6, and the variation ($\Delta \epsilon$) caused by the strain.

F-GNR@MAPbI ₃ (001)	$a^{\text{het}} = 12.45 \text{ Å}$	$a^{\text{het}} = 12.87 \text{ Å}$	Δε
FSS of MAPbI ₃ (001)	1.30	1.15	-0.15
ESS of MAPbI ₃ (001)	3.45	3.40	-0.05
VBM of H-GNR	1.75	1.70	-0.05
CBM of H-GNR	2.80	2.75	-0.05