Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Supporting Information:

DFT insights into Electrocatalytic CO₂ Reduction to Methanol on α -Fe₂O₃(0001) Surface

Nandha Kumar,* Nicola Seriani, and Ralph Gebauer

The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151

Trieste, Italy.

E-mail: nvelanka@ictp.it

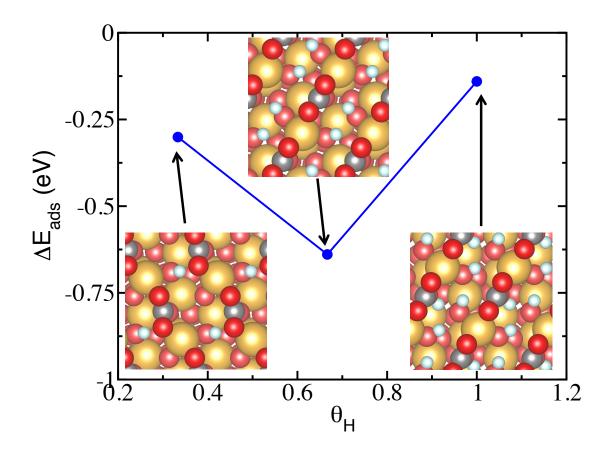


Figure S1: Adsorption energy of CO_2 for various surface H coverages. Top view of the geometries are also given. Fe, O, C and H atoms are respectively represented by orange, red, grey and cyan colour balls. For clear visualisation the surface atoms are represented with reduced brightness.

Table S1: Distinct reaction steps and their reaction energies (ΔE) at U = 0 V.

Index	Reaction step	$\Delta E \; ({ m eV})$
1	$^{*}\mathrm{CO}_2$ $^{*}\mathrm{COOH}$	-0.76
2	$^{*}\mathrm{CO}_2$ $^{(\mathrm{H^+}+\mathrm{e^-})}$ $^{*}\mathrm{HCOO}$	0.18
3	$^*\mathrm{CO}_2$ $^*\mathrm{CHO}$	-0.18
4	$\stackrel{(H^+ + e^-)}{\overset{*}{\text{CO}_2}} \qquad \stackrel{(H^+ + e^-)}{\overset{*}{\text{CO}}}$	*OH

 ${\bf Table~S1}-{\it Continued~from~previous~page}$

Index		Reaction step			ΔE (eV)
5		→		+	1.73
	$*{\rm CO}_2$		*CO	*O	
6		$\xrightarrow{\text{(H^+ + e^-)}} \rightarrow$			0.95
	*COOH		*HCOOH		
7	*COOH	$\xrightarrow{\text{(H}^+ + e^-)} \rightarrow$	*СОНОН		1.22
8	*COOH	$\xrightarrow{\text{(H^+ + e^-)}}$	*CO	+ *H ₂ O	1.05

Table S1 – Continued from previous page

Index	Reaction step					
Index		recuciion step			ΔE (eV)	
9	*COOH	$\xrightarrow{\text{(H^+ + e^-)}}$	*СНО	+ *ОН	0.04	
10	*COOH	$\xrightarrow{\text{(H^+ + e^-)}}$	*COH	+ *OH	1.52	
11	*COOH	$\xrightarrow{\text{(H^+ + e^-)}}$	*HCOH	*0	2.36	
12	*COOH	→	*CO	+ *OH	1.96	

 ${\bf Table~S1}-{\it Continued~from~previous~page}$

Index		Reaction step			ΔE (eV)
13		→		+	2.06
	*COOH		*COH	*O	
14		$\xrightarrow{\text{(H^+ + e^-)}} \rightarrow$			0.01
	*HCOO		*HCOOH		
15	*HCOO	$\xrightarrow{\text{(H^+ + e^-)}} \rightarrow$	*OCH ₂ O		1.01
16	*HCOO	$\xrightarrow{\text{(H^+ + e^-)}}$	*CHO	+ *OH	-0.90

 ${\bf Table~S1}-{\it Continued~from~previous~page}$

Index		Reaction step			ΔE (eV)
17		$\xrightarrow{\text{(H^+ + e^-)}} \rightarrow$			0.45
	HCOO		$^\mathrm{CH}_2\mathrm{O}$	*O	
18		→			-0.36
	*HCOO		*CHO	*O	
19	*HCOOH	$\xrightarrow{\text{(H^+ + e^-)}}$	*OCH ₂ OH		-0.13
20	*HCOOH	$\xrightarrow{\text{(H^+ + e^-)}} \rightarrow$	*НСОНОН		1.05

 ${\bf Table~S1}-{\it Continued~from~previous~page}$

Index		Reaction step			ΔE (eV)
21		$\xrightarrow{\text{(H^+ + e^-)}} \rightarrow$			-1.82
	*HCOOH		*CHO	*H ₂ O	
22		$\xrightarrow{\text{(H^+ + e^-)}}$		+	-0.09
	*HCOOH		*CH ₂ O	*OH	
23	*HCOOH	$\xrightarrow{\text{(H^+ + e^-)}} \rightarrow$	*HCOH	+ *OH	0.87
24	*HCOOH	$\xrightarrow{\text{(H^+ + e^-)}}$	*CH ₂ OH	+ * _O	-0.16

 ${\bf Table~S1}-{\it Continued~from~previous~page}$

Index		Reaction step			ΔE (eV)
25		→		+	-0.91
	*НСООН		*CHO	*ОН	
26		→			1.41
	*НСООН		*HCOH	*O	
27	*СОНОН	$\xrightarrow{(H^+ + e^-)} \rightarrow$	*НСОНОН		0.78
28	*СОНОН	$\xrightarrow{\text{(H+ + e^-)}}$	*COH	+ *H ₂ O	-0.61

Table S1 - Continued from previous page

Index		Reaction step			$\Delta E \text{ (eV)}$
29		$\xrightarrow{\text{(H}^+ + e^-)} \rightarrow$		+	0.60
	*СОНОН		*НСОН	*ОН	
30					-0.17
	*СОНОН		*CO	*H ₂ O	
31		→		+	0.30
	*СОНОН		*COH	*OH	
32	*OCH ₂ O	$\xrightarrow{\text{(H}^+ + e^-)} \rightarrow$	*OCH ₂ OH		-1.14

Table S1 - Continued from previous page

Index		Reaction step			$\Delta E \text{ (eV)}$
33		$\xrightarrow{\text{(H^+ + e^-)}}$		+	-1.10
	*OCH ₂ O		*CH ₂ O	*ОН	
34		$\xrightarrow{\text{(H^+ + e^-)}}$		+	-0.72
	*OCH ₂ O		*CH ₃ O	*O	
35		→		+	-0.56
	*OCH ₂ O		*CH ₂ O	*O	
36	*OCH ₂ OH	$\xrightarrow{\text{(H^+ + e^-)}}$	*HOCH ₂ OH		-0.59

Table S1 - Continued from previous page

Index		Reaction step			$\Delta E \text{ (eV)}$
37		$\xrightarrow{\text{(H^+ + e^-)}}$		+	-0.87
	OCH ₂ OH		$^\mathrm{CH}_2\mathrm{O}$	$^{*}\mathrm{H}_{2}\mathrm{O}$	
38		$\xrightarrow{\text{(H^+ + e^-)}}$		+	-0.12
	*OCH ₂ OH		*CH ₃ O	*ОН	
39	*OCH-OH	$\xrightarrow{\text{(H^+ + e^-)}} \rightarrow$	*СН-ОН	+ *OH	-0.56
	*OCH ₂ OH		*CH ₂ OH	ОН	
40	*OCH ₂ OH	$\xrightarrow{\text{(H^+ + e^-)}}$	*CH ₃ OH	+ *O	-0.46

Table S1 – Continued from previous page

Index		Reaction step			$\Delta E \text{ (eV)}$
41		→		+	0.04
	*OCH ₂ OH		*CH2O	*ОН	
42					-0.03
	*OCH ₂ OH		*CH2OH	*O	
43	*НСОНОН	$\xrightarrow{\text{(H^+ + e^-)}} \rightarrow$	*HOCH ₂ OH		-1.78
44	*НСОНОН	$\xrightarrow{\text{(H^+ + e^-)}} \rightarrow$	*HCOH	+ *H ₂ O	-1.09

Table S1 - Continued from previous page

Index	Reaction step				
45		$\xrightarrow{\text{(H+ + e^-)}}$		+	-1.09
	*НСОНОН		*CH ₂ OH	*OH	
46		→			-2.86
	*НСОНОН		*CHO	$^{*}\mathrm{H}_{2}\mathrm{O}$	
47				+	-0.18
	*НСОНОН		*HCOH	*OH	
48	*HOCH ₂ OH	$\xrightarrow{\text{(H^+ + e^-)}} \rightarrow$	*CH ₂ OH	+ *H ₂ O	-0.88

Table S1 - Continued from previous page

Index		Reaction step			$\Delta E \text{ (eV)}$
49		$\xrightarrow{\text{(H^+ + e^-)}}$		+	-0.40
	*HOCH ₂ OH		*CH ₃ OH	*ОН	
50		→		+	-0.28
	*HOCH ₂ OH		*CH ₂ O	*H ₂ O	
51		→		+	0.03
	*HOCH ₂ OH		*CH ₂ OH	*ОН	
52	*CO	$\xrightarrow{\text{(H^+ + e^-)}}$	*CHO		-1.91

Table S1 - Continued from previous page

Index		Reaction step	ΔE (eV)
53		$\stackrel{(\mathrm{H^{+}}+\mathrm{e^{-}})}{\longrightarrow}$	-0.44
	*CO	*COH	
54		$\xrightarrow{\text{(H^+ + e^-)}}$	0.81
	CHO	${ m CH_2O}$	
55		$\stackrel{(\mathrm{H^+} + \mathrm{e^-})}{\longrightarrow}$	1.78
	*CHO	*НСОН	
56	*COH	$\stackrel{(\mathrm{H^{+}}+\mathrm{e^{-}})}{\longrightarrow}$ *HCOH	0.30

Table S1 – Continued from previous page

$egin{array}{c ccccccccccccccccccccccccccccccccccc$				
	Reaction step		$\Delta E \text{ (eV)}$	
	$\xrightarrow{\text{(H^+ + e^-)}}$		-0.60	
*CH ₂ O	*($\mathrm{CH_{2}OH}$		
	$\xrightarrow{\text{(H^+ + e^-)}}$		-0.17	
*CH ₂ O	*	CH ₃ O		
	$\xrightarrow{\text{(H^+ + e^-)}}$		-1.57	
*HCOH	*(CH ₂ OH		
*CH ₂ OH	(H ⁺ + e [−]) *(CH ₃ OH	-0.43	
	*CH ₂ O *CH ₂ O *CH ₂ O	Reaction step $(H^{+} + e^{-})$ $*CH_{2}O$ $*(H^{+} + e^{-})$ $*HCOH$ $*(H^{+} + e^{-})$ $*(H^{+} + e^{-})$	Reaction step $ \stackrel{(H^+ + e^-)}{\overset{*}{\text{CH}_2\text{O}}} \stackrel{*}{\overset{*}{\text{CH}_2\text{OH}}} $	

Table S1 - Continued from previous page

Index		Reaction step		$\Delta E \text{ (eV)}$
61		$\xrightarrow{\text{(H^+ + e^-)}} \rightarrow$		-0.87
	*CH ₃ O		*CH ₃ OH	
62		$\xrightarrow{\text{(H^+ + e^-)}}$		-0.54
	*O		*ОН	
63	*OH	$\xrightarrow{\text{(H^+ + e^-)}}$	$^{*}\mathrm{H}_{2}\mathrm{O}$	-0.91

Table S2: All the possible reaction paths for the formation of CH_2O through electrocatalytic reduction of CO_2 on hematite surface and minimum potential (U_{min}) required to make all the reaction steps downhill process. The potential determining step is given bold font.

Index	Reaction path	Path name	\mathbf{U}_{min} (V)
1	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{+ (H^+ + e^-)} *OCH_2OH$		
	$\xrightarrow{+ (H^+ + e^-)} *HOCH_2OH \xrightarrow{- *H_2O} *CH_2O$	$O_1C_2O_1A^1$	-0.95
2	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{+ (H^+ + e^-)} *OCH_2OH$		
	$\xrightarrow{-\text{*H}_2O} \text{*CH}_2O$	$O_1 C_2 O_1 A^3$	-0.95
3	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{+ (H^+ + e^-)} *HCOHOH$		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *HOCH_2OH \xrightarrow{- *H_2O} *CH_2O$	$O_1C_1O_1C_1A^1$	-1.05
4	$*{\rm CO}_2 \xrightarrow{+ ({\rm H}^+ + {\rm e}^-)} *{\rm COOH} \xrightarrow{+ ({\rm H}^+ + {\rm e}^-)} *{\bf HCOOH} \xrightarrow{+ ({\rm H}^+ + {\rm e}^-)} *{\bf HCOHOH}$		
	$\xrightarrow{-*_{H_2O}} *_{CHO} \xrightarrow{+ (H^+ + e^-)} *_{CH_2O}$	$O_1C_1O_1A_{C_1}^1$	-1.05
5	*CO ₂ $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *COOH $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *HCOOH $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *CHO		
	$\xrightarrow{+ (H^+ + e^-)} *CH_2O$	$O_1C_1O_1A_{C_1}^3$	-0.95
6	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *COHOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOHOH		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HOCH}_2\text{OH} \xrightarrow{- *\text{H}_2\text{O}} *\text{CH}_2\text{O}$	$O_2C_2A^1$	-1.22
7	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *COHOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOHOH		
	$\xrightarrow{-*_{12}O} *_{CHO} \xrightarrow{+ (H^{+} + e^{-})} *_{CH_{2}O}$	$O_2C_1A_{C_1}^1$	-1.22
8	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *COHOH $\xrightarrow{- *_{H_2O}}$ *CO		
	$\xrightarrow{+ (H^{+} + e^{-})} *CHO \xrightarrow{+ (H^{+} + e^{-})} *CH_{2}O$ $\xrightarrow{+ (H^{+} + e^{-})} *CH_{2}O \xrightarrow{+ (H^{+} + e^{-})} *CH_{2}O$	$O_2 A_{C_2}^1$	-1.22
9	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *CO $\xrightarrow{+ (H^+ + e^-)}$ *CHO $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ O	_	
10	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ OH	$O_2 A_{C_2}^3$	-1.05
10	* CO_2 * $HCOOH$ * $HCOOH$ * $HCOOH$ * OCH_2OH * $HCOOH$ * OCH_2OH	$C_1O_1C_1O_1A^1$	-0.18
11	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ OH	$C_1O_1C_1O_1A$	-0.10
11	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_1O_1C_1O_1A^3$	-0.18
12	$^{-*\text{H}_2\text{O}} \text{*CO}_2 \xrightarrow{+ \text{ (H}^+ + \text{e}^-)} \text{*HCOO} \xrightarrow{+ \text{ (H}^+ + \text{e}^-)} \text{*HCOOH} \xrightarrow{+ \text{ (H}^+ + \text{e}^-)} \text{*HCOHOH}$	Clolelel	
	$\xrightarrow{+ (H^+ + e^-)} *HOCH_2OH \xrightarrow{- *H_2O} *CH_2O$	$C_1O_2C_1A^1$	-1.05
13	$^{-*H_2O}$ $^{*CO_2} \xrightarrow{+ (H^+ + e^-)} ^{*HCOO} \xrightarrow{+ (H^+ + e^-)} ^{*HCOOH} \xrightarrow{+ (H^+ + e^-)} ^{*HCOHOH}$	11211	
	$\xrightarrow{-*_{12}O} *_{CHO} \xrightarrow{+ (H^+ + e^-)} *_{CH_2O}$	$C_{1}O_{2}A_{C_{1}}^{1}$	-1.05
14	*CO ₂ $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *HCOO $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *HCOOH $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *CHO		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{O}$	$C_1O_2A_{C_1}^3$	-0.81
15	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ * HCOO $\xrightarrow{+ (H^+ + e^-)}$ * OCH ₂ O $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ OH		-
	$\xrightarrow{+ (H^{+} + e^{-})} *HOCH_{2}OH \xrightarrow{- *H_{2}O} *CH_{2}O$	$C_2O_2A^1$	-1.01

Table S2 - Continued from previous page

Index	Reaction path	Path name	\mathbf{U}_{min} (V)
16	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *OCH_2CO \xrightarrow{+ (H^+ + e^-)} *OCH_2OH$		
	$\xrightarrow{+ \text{ (H}^+ + e^-)} *\text{CH}_2\text{O}$	$C_2O_2A^3$	-1.01
17	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ OH		
	$\xrightarrow{-\text{*OH}}$ *CH ₂ O	$O_1C_2B^1$	-0.95
18	*CO ₂ $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *COOH $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *HCOOH $\xrightarrow{- \text{ *OH}}$ *CH ₂ O	${}_{O_1C_2}B^3$	-0.95
19	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{- *OH} *CHO$		
	$\xrightarrow{+\text{ (H}^+ + e^-)} *\text{CH}_2\text{O}$	$O_1 C_1 B_{C_1}^1$	-0.95
20	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{- *OH} *CHO \xrightarrow{+ (H^+ + e^-)} *CHO$	$O_1 C_1 B_{C_1}^3$	-0.81
21	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{- *OH} *CO \xrightarrow{+ (H^+ + e^-)} *CHO$		
	$\xrightarrow{+\text{ (H}^+ + e^-)} *\text{CH}_2\text{O}$	$O_1B^1_{C_2}$	-1.96
22	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ OH		
	$\xrightarrow{-\text{*OH}}$ *CH ₂ O	$_{C_1O_1C_1}B^1$	-0.18
23	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{- * OH}$ *CH ₂ O	$_{C_1O_1C_1}B^3$	-0.18
24	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{- *OH} *CHO$		
	$\xrightarrow{+\text{ (H}^+ + e^-)} *\mathbf{CH}_2\mathbf{O}$	$_{C_{1}O_{1}}B_{C_{1}}^{1}$	-0.81
25	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ O $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ OH		
	$\xrightarrow{-\text{*OH}}$ *CH ₂ O	$_{C_2O_1}B^1$	-1.01
26	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *OCH_2O \xrightarrow{+ (H^+ + e^-)} *CH_2O$	$_{C_2O_1}B^3$	-1.01
27	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{- *OH}$ *CHO $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ O	$C_1 O_1 B_{C_1}^3$	-0.81
28	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *CO $\xrightarrow{+ (H^+ + e^-)}$ *CHO $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ O	$_{O_1}B_{C_2}^3$	-1.20
29	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *OCH_2O \xrightarrow{- *O} *CH_2O$	$_{C_2}C^1$	-1.01
30	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{- *O}$ *CH ₂ O	$_{C_2}C^3$	-0.45
31	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{- *O} *CHO \xrightarrow{+ (H^+ + e^-)} *CH_2O$	$C_1 C_{C_1}^1$	-0.81
32	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *CHO \xrightarrow{+ (H^+ + e^-)} *CH_2O$	$C_{1}C_{C_{1}}^{3}$	-0.81
33	*CO ₂ $\xrightarrow{-*O}$ *CO $\xrightarrow{+ (H^+ + e^-)}$ *CHO $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ O	$C^1_{C_2}$	-1.73

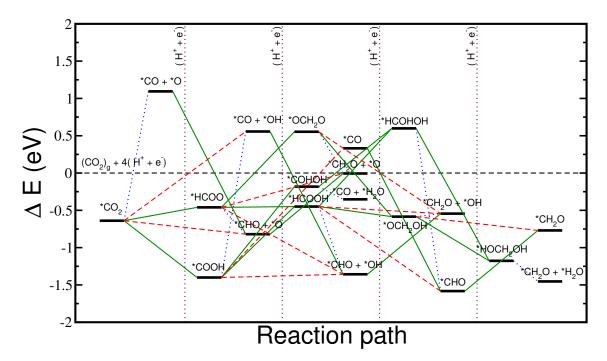


Figure S2: The free energy diagram of electrocatalytic reduction of CO_2 to CH_2O on hematite surface at 0 V (RHE). The reaction step types (1), (2) and (3) presented in Section-2 of main article are respectively represented by blue dotted lines, green solid lines and red dashed lines. The vertical lines represents the proton-electron transfer step.

Table S3: All the possible reaction paths for the formation of CH_3OH through electrocatalytic reduction of CO_2 on hematite surface and minimum potential (U_{min}) required to make all the reaction steps downhill process. The potential determining step is given bold font.

Index	Reaction path	Path name	\mathbf{U}_{min} (V)
1	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{+ (H^+ + e^-)} *OCH_2OH$		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HOCH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$O_1 C_2 O_2 A_{C_1}^3$	-0.95
2	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{+ (H^+ + e^-)} *OCH_2OH$		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HOCH}_2\text{OH} \xrightarrow{- *_{\text{H}_2}\text{O}} *\text{CH}_2\text{O} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH}$		
	$\xrightarrow{+ (\mathrm{H^+ + e^-})} *\mathrm{CH_3OH}$	$O_1C_2O_1A^1_{O_1C_1}$	-0.95
3	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{+ (H^+ + e^-)} *OCH_2OH$		
	$\xrightarrow{+\text{ (H}^+ + e^-)} *\text{HOCH}_2\text{OH} \xrightarrow{-\text{ *H}_2\text{O}} *\text{CH}_2\text{O} \xrightarrow{+\text{ (H}^+ + e^-)} *\text{CH}_3\text{O}$		
	$\xrightarrow{+ (\mathrm{H^+ + e^-})} *\mathrm{CH_3OH}$	$O_1C_2O_1A^1_{C_1O_1}$	-0.95
4	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{+ (H^+ + e^-)} *OCH_2OH$		
	$\xrightarrow{+\text{ (H}^+ + e^-)} *\text{CH}_2\text{O} \xrightarrow{+\text{ (H}^+ + e^-)} *\text{CH}_2\text{OH} \xrightarrow{+\text{ (H}^+ + e^-)} *\text{CH}_3\text{OH}$	$O_1C_2O_1A_{O_1C_1}^3$	-0.95
5	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{+ (H^+ + e^-)} *OCH_2OH$		
	$\xrightarrow{+ (H^+ + e^-)} *CH_2O \xrightarrow{+ (H^+ + e^-)} *CH_3O \xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$O_1 C_2 O_1 A_{C_1 O_1}^3$	-0.95

Table S3 - Continued from previous page

Index	Table S3 – Continued from previous page Reaction path	Path name	\mathbf{U}_{min} (V)
6	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOHOH		- 11111 (1)
· ·	$\xrightarrow{+ (H^+ + e^-)} *HOCH_2OH \xrightarrow{*H_2OH} \xrightarrow{*H_2OH} \xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$O_1C_1O_1C_1O_1A_{C_1}^3$	-1.05
7	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOHOH	- 1	
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HOCH}_2\text{OH} \xrightarrow{- *_{\text{H}_2}\text{O}} *\text{CH}_2\text{O} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH}$		
	$\xrightarrow{+ (H^{+} + e^{-})} *CH_{3}OH$	$O_1C_1O_1C_1A_{O_1C_1}^1$	-1.05
8	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOHOH		
	$\xrightarrow{+ (H^{+} + e^{-})} *HOCH_{2}OH \xrightarrow{- *H_{2}O} *CH_{2}O \xrightarrow{+ (H^{+} + e^{-})} *CH_{3}O$ $\xrightarrow{+ (H^{+} + e^{-})} *CH_{3}OH$	41	1.05
9	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOHOH	$O_1 C_1 O_1 C_1 A_{C_1 O_1}^1$	-1.05
	$\xrightarrow{+ (H^+ + e^-)} *HCOH \xrightarrow{+ (H^+ + e^-)} *CH_2OH \xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$O_1C_1O_2A_{C_2}^3$	-1.05
10	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOHOH		
	$\xrightarrow{-*_{H_2O}} *_{CHO} \xrightarrow{+ (H^+ + e^-)} *_{CH_2O} \xrightarrow{+ (H^+ + e^-)} *_{CH_2OH}$		
	$\xrightarrow{+ (H^{+} + e^{-})} *CH_{3}OH$	$O_1C_1O_1A^1_{C_1O_1C_1}$	-1.05
11	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOHOH $\xrightarrow{- *_{H_2O}}$ *CHO $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ O $\xrightarrow{+ (H^+ + e^-)}$ *CH ₃ O		
	$\xrightarrow{-*H_2O} \xrightarrow{+(H^+ + e^-)} *CH_3OH$	$O_1C_1O_1A_{C_2O_1}^1$	-1.05
12	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{+ (H^+ + e^-)} *HCOHOH$	$O_1C_1O_1 \cap C_2O_1$	-1.05
	$\xrightarrow{-*_{H2O}} * \xrightarrow{+ (H^+ + e^-)} *HCOH \xrightarrow{+ (H^+ + e^-)} *CH_2OH$		
	$\xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$O_1C_1O_1A_{O_1C_2}^1$	-1.78
13	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{- *_{H_2O}}$ *CHO		
4.4	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{O} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$ $*\text{CO}_2 \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{COOH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HCOOH} \xrightarrow{- *\text{H}_2\text{O}} *\text{CHO}$	$O_1C_1O_1A_{C_1O_1C_1}^3$	-0.95
14	*CO ₂ $\xrightarrow{*}$ *CHO $\xrightarrow{-*H_2O}$ *CHO $\xrightarrow{-*H_2O}$ *CHO $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ O $\xrightarrow{+ (H^+ + e^-)}$ *CH ₃ OH	$O_1C_1O_1A_{C_2O_1}^3$	-0.95
15	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{- *H_2O}$ *CHO	$O_1C_1O_1^{A}C_2O_1$	-0.95
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HCOH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$O_1C_1O_1A_{O_1C_2}^3$	-1.78
16	$*\text{CO}_2 \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{COOH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{COHOH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HCOHOH}$		
	$\xrightarrow{+ (H^{+} + e^{-})} *HOCH_{2}OH \xrightarrow{+ (H^{+} + e^{-})} *CH_{2}OH \xrightarrow{+ (H^{+} + e^{-})} *CH_{3}OH$	$O_2C_2A_{O_1C_1}^3$	-1.22
17	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *COHOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOHOH $\xrightarrow{+ (H^+ + e^-)}$ *HOCH ₂ OH $\xrightarrow{*H_*O}$ *CH ₂ O $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ OH		
	$\xrightarrow{*} \text{*HOCH}_2\text{OH} \xrightarrow{-} \text{*CH}_2\text{O} \xrightarrow{-} \text{*CH}_2\text{OH}$ $\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)}} \text{*CH}_3\text{OH}$	o. g. 1	-1.22
18	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *COHOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOHOH	$O_2C_2A_{O_1C_1}^1$	-1.22
-	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HOCH}_2\text{OH} \xrightarrow{- *\text{H}_2\text{O}} *\text{CH}_2\text{O} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{O}$		
	$\xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$O_2C_2A_{C_1O_1}^1$	-1.22

Table S3 - Continued from previous page

Index	Table S3 – Continued from previous page Reaction path	Path name	II (V)
-	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *COHOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOHOH	Fath hame	$oxed{ \mathbf{U}_{min} \; (\mathbf{V}) }$
19	*CO ₂ \longrightarrow *COOH \longrightarrow *COHOH \longrightarrow *HCOHOH $\frac{+ (H^{+} + e^{-})}{- *_{H2}O} *_{HCOHO} \xrightarrow{+ (H^{+} + e^{-})} *_{CH_{2}OH} \xrightarrow{+ (H^{+} + e^{-})} *_{CH_{3}OH}$	$O_2C_1O_1A_{C_2}^3$	-1.22
20	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *COHOH \xrightarrow{+ (H^+ + e^-)} *HCOHOH$		
	$\xrightarrow{-*H_2O}$ *CHO $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ O $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ OH		
	$\xrightarrow{\text{H}_2G}$ $\xrightarrow{\text{H}_4H_4+e^-}$ *CH ₃ OH	$O_2C_1A_{C_1O_1C_1}^1$	-1.22
21	$*{ m CO}_2 \xrightarrow{+ ({ m H}^+ + { m e}^-)} *{ m COOH} \xrightarrow{+ ({ m H}^+ + { m e}^-)} *{ m COHOH} \xrightarrow{+ ({ m H}^+ + { m e}^-)} *{ m HCOHOH}$		
	$\xrightarrow{-*_{H_2O}}$ *CHO $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ O $\xrightarrow{+ (H^+ + e^-)}$ *CH ₃ O		
	$\xrightarrow{\text{H}_2G}$ $\xrightarrow{\text{H}_4H_4+e^-}$ *CH ₃ OH	$O_2C_1A_{C_2O_1}^1$	-1.22
22	*CO $_2 \xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *COHOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOHOH	- 2 - 1	
	$\xrightarrow{-*_{H2O}}$ *CHO $\xrightarrow{+ (H^+ + e^-)}$ *HCOH $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ OH		
	$\frac{+ (H^{+} + e^{-})}{} * CH_3OH$	$O_2C_1A_{O_1C_2}^1$	-1.78
23	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *COHOH $\xrightarrow{- *H_2O}$ *COH	- 2	
	$\xrightarrow{+ (H^{+} + e^{-})} *HCOH \xrightarrow{+ (H^{+} + e^{-})} *CH_{2}OH \xrightarrow{+ (H^{+} + e^{-})} *CH_{3}OH$	$O_3 A_{C_3}^3$	-1.22
24	* $CO_2 \xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *COHOH $\xrightarrow{- *H_2O}$ *CO	-	
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CHO} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{O} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH}$		
	$\xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$O_2A^1_{C_2O_1C_1}$	-1.22
25	* $CO_2 \xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *COHOH $\xrightarrow{- *H_2O}$ *CO		
	$\xrightarrow{+\text{ (H}^+ + e^-)} *\text{CHO} \xrightarrow{+\text{ (H}^+ + e^-)} *\text{CH}_2\text{O} \xrightarrow{+\text{ (H}^+ + e^-)} *\text{CH}_3\text{O}$		
	$\xrightarrow{+\text{ (H}^+ + e^-)} *\text{CH}_3\text{OH}$	$O_2A^1_{C_3O_1}$	-1.22
26	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *COHOH \xrightarrow{- *H_2O} *CO$		
	$\xrightarrow{+ \text{ (H}^+ + e^-)}$ *CHO $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *HCOH $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *CH ₂ OH		
	$\xrightarrow{+ \text{ (H}^+ + e^-)} *\text{CH}_3\text{OH}$	$O_2 A^1_{C_1 O_1 C_2}$	-1.78
27	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *COHOH $\xrightarrow{- *_{H_2O}}$ *CO		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{COH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HCOH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH}$		
	$\xrightarrow{+ \text{ (H}^+ + e^-)} *\text{CH}_3\text{OH}$	$O_2A^1_{O_1C_3}$	-1.22
28	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *CO $\xrightarrow{+ (H^+ + e^-)}$ *CHO		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{O} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$O_2 A_{C_2 O_1 C_1}^3$	-1.05
29	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *CO \xrightarrow{+ (H^+ + e^-)} *CHO$		
	$\xrightarrow{+ (H^{+} + e^{-})} *CH_{2}O \xrightarrow{+ (H^{+} + e^{-})} *CH_{3}O \xrightarrow{+ (H^{+} + e^{-})} *CH_{3}OH$	$O_2A_{C_3O_1}^3$	-1.05
30	*CO ₂ $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *COOH $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *CO $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *CHO		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HCOH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$O_2 A_{C_1 O_1 C_2}^3$	-1.78
31	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *CO \xrightarrow{+ (H^+ + e^-)} *COH$		
	$\xrightarrow{+\text{ (H}^+ + e^-)} *\text{HCOH} \xrightarrow{+\text{ (H}^+ + e^-)} *\text{CH}_2\text{OH} \xrightarrow{+\text{ (H}^+ + e^-)} *\text{CH}_3\text{OH}$	$O_2A_{O_1C_3}^3$	-1.05
	~ .		

Table S3 - Continued from previous page

Index	Table S3 – Continued from previous page Reaction path	Path name	U _{min} (V)
32	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ OH	1 dui name	Omin (V)
32	$\xrightarrow{+ (H^+ + e^-)} *HOCH_2OH \xrightarrow{*H_2OH} \xrightarrow{*H_2OH} \xrightarrow{+ (H^+ + e^-)} *CH_2OH \xrightarrow{+ (H^+ + e^-)} *CH_3OH$		-0.18
	- "H ₂ O	$C_1 O_1 C_1 O_2 A_{C_1}^3$	-0.16
33	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ OH		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HOCH}_2\text{OH} \xrightarrow{- *\text{H}_2\text{O}} *\text{CH}_2\text{O} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH}$		
	$\xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$C_1O_1C_1O_1A_{O_1C_1}^1$	-0.18
34	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ OH		
	$\xrightarrow{+\text{ (H}^+ + e^-)} *\text{HOCH}_2\text{OH} \xrightarrow{-\text{ *H}_2\text{O}} *\text{CH}_2\text{O} \xrightarrow{+\text{ (H}^+ + e^-)} *\text{CH}_3\text{O}$		
	$\xrightarrow{+\text{ (H}^+ + e^-)} *\text{CH}_3\text{OH}$	$C_1O_1C_1O_1A_{C_1O_1}^1$	-0.18
35	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ OH		
	$\xrightarrow{+\text{ (H}^+ + e^-)} *\text{CH}_2\text{O} \xrightarrow{+\text{ (H}^+ + e^-)} *\text{CH}_2\text{OH} \xrightarrow{+\text{ (H}^+ + e^-)} *\text{CH}_3\text{OH}$	$C_1O_1C_1O_1A_{O_1C_1}^3$	-0.18
36	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ OH		
	$\xrightarrow{+ \text{ (H}^+ + e^-)} *\text{CH}_2\text{O} \xrightarrow{+ \text{ (H}^+ + e^-)} *\text{CH}_3\text{O} \xrightarrow{+ \text{ (H}^+ + e^-)} *\text{CH}_3\text{OH}$	$C_1O_1C_1O_1A_{C_1O_1}^3$	-0.18
37	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOHOH		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HOCH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$C_1O_2C_1O_1A_{C_1}^3$	-1.05
38	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOHOH	01020101 01	
30	$\xrightarrow{+ (H^+ + e^-)} *HOCH_2OH \xrightarrow{*H_2O} *CH_2O \xrightarrow{+ (H^+ + e^-)} *CH_2OH$		
	$\frac{+ (H^{+} + e^{-})}{- *H_{2}O} *CH_{2}OH$	41	
20	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOHOH	$C_1 O_2 C_1 A_{O_1 C_1}^1$	-1.05
39			
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HOCH}_2\text{OH} \xrightarrow{- *_{\text{H}_2\text{O}}} *\text{CH}_2\text{O} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{O}$		
	$\xrightarrow{+ (H^{+} + e^{-})} *CH_{3}OH$	$C_1 O_2 C_1 A_{C_1 O_1}^1$	-1.05
40	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{+ (H^+ + e^-)} *HCOHOH$		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HCOH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$C_1 O_3 A_{C_2}^3$	-1.05
41	*CO ₂ $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *HCOO $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *HCOOH $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *HCOHOH		
	$\xrightarrow{-*_{12}O} *_{CHO} \xrightarrow{+ (H^{+} + e^{-})} *_{CH_{2}O} \xrightarrow{+ (H^{+} + e^{-})} *_{CH_{2}OH}$		
	$\xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$C_1O_2A^1_{C_1O_1C_1}$	-1.05
42	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{+ (H^+ + e^-)} *HCOHOH$		
	$\xrightarrow{-*_{12}O} *_{CHO} \xrightarrow{+ (H^{+} + e^{-})} *_{CH_{2}O} \xrightarrow{+ (H^{+} + e^{-})} *_{CH_{3}O}$		
	$\xrightarrow{\text{H}^{2}\text{G}} *\text{CH}_{3}\text{OH}$	$C_1O_2A_{C_2O_1}^1$	-1.05
43	$*{ m CO}_2 \xrightarrow{+ ({ m H}^+ + { m e}^-)} *{ m HCOO} \xrightarrow{+ ({ m H}^+ + { m e}^-)} *{ m HCOOH} \xrightarrow{+ ({ m H}^+ + { m e}^-)} *{ m HCOHOH}$	1 2 0201	
	$\xrightarrow{-*_{H2O}} *CHO \xrightarrow{+ (H^+ + e^-)} *HCOH \xrightarrow{+ (H^+ + e^-)} *CH_2OH$		
	$-*H_2O \to (H^+ + e^-) *CH_3OH$	$C_1O_2A_{O_1C_2}^1$	-1.78
44	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *CHO	0102 -0102	
	$\xrightarrow{+ (H^+ + e^-)} *CH_2O \xrightarrow{+ (H^+ + e^-)} *CH_2OH \xrightarrow{+ (H^+ + e^-)} *CH_3OH$		0.91
	$\longrightarrow {}^{+}Cn_{2}U \longrightarrow {}^{+}Cn_{3}UH$	$C_1 O_2 A_{C_1 O_1 C_1}^3$	-0.81

Table S3 - Continued from previous page

Index	Reaction path	Path name	\mathbf{U}_{min} (V)
45	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{- *H_2O} *CHO$		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{O} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{O} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$C_1O_2A_{C_2O_1}^3$	-0.81
46	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{+ (H^+ + e^-)} *CHO$	0102 0201	
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HCOH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$C_1O_2A_{O_1C_2}^3$	-1.78
47	* $\mathrm{CO}_2 \xrightarrow{+ (\mathrm{H}^+ + \mathrm{e}^-)} *\mathrm{HCOO} \xrightarrow{+ (\mathrm{H}^+ + \mathrm{e}^-)} *\mathrm{OCH}_2\mathrm{O} \xrightarrow{+ (\mathrm{H}^+ + \mathrm{e}^-)} *\mathrm{OCH}_2\mathrm{OH}$	$C_1 O_2 - O_1 C_2$	
	$\xrightarrow{+ (H^+ + e^-)}$ *HOCH ₂ OH $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ OH $\xrightarrow{+ (H^+ + e^-)}$ *CH ₃ OH	$C_2O_3A_{C_1}^3$	-1.01
48	*CO ₂ $\xrightarrow{+ (H^{+} + e^{-})}$ * HCOO $\xrightarrow{+ (H^{+} + e^{-})}$ * OCH ₂ O $\xrightarrow{+ (H^{+} + e^{-})}$ *OCH ₂ OH	223	
10	$\xrightarrow{+ (H^{+} + e^{-})} *HOCH_{2}OH \xrightarrow{- *H_{2}O} *CH_{2}O \xrightarrow{+ (H^{+} + e^{-})} *CH_{2}OH$		
	$-*H_2O$ $\xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$C_2O_2A^1_{O_1C_1}$	-1.01
49	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ O $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ OH	$C_2O_2^{-1}O_1C_1$	-1.01
10	$\xrightarrow{+ (H^{+} + e^{-})} *HOCH_{2}OH \xrightarrow{*H_{2}O} *CH_{2}O \xrightarrow{+ (H^{+} + e^{-})} *CH_{3}O$		
	$-*H_2O$ $\xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$C_2O_2A_{C_1O_1}^1$	-1.01
50	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ * HCOO $\xrightarrow{+ (H^+ + e^-)}$ * OCH ₂ O $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ OH	$C_2O_2^{-1}C_1O_1$	-1.01
	$\xrightarrow{+\text{ (H}^+ + e^-)} \text{*CH}_2\text{O} \xrightarrow{+\text{ (H}^+ + e^-)} \text{*CH}_2\text{OH} \xrightarrow{+\text{ (H}^+ + e^-)} \text{*CH}_3\text{OH}$	$C_2O_2A_{O_1C_1}^3$	-1.01
51	$ \begin{array}{c} -*_{H_2O} \\ *CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *OCH_2O \xrightarrow{+ (H^+ + e^-)} *OCH_2OH \end{array} $	222 0101	
01	$\xrightarrow{+ (H^{+} + e^{-})} *CH_{2}O \xrightarrow{+ (H^{+} + e^{-})} *CH_{3}O \xrightarrow{+ (H^{+} + e^{-})} *CH_{3}OH$	$C_2O_2A_{C_1O_1}^3$	-1.01
52	$^{-*H_2O} *CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{+ (H^+ + e^-)} *OCH_2OH$	C_2C_2 C_1O_1	
52	$\xrightarrow{+ (H^{+} + e^{-})} *HOCH_{2}OH \xrightarrow{*OH} *CH_{3}OH$	$O_1 C_2 O_1 C_1 B^3$	-0.95
53	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ OH	$O_1 C_2 O_1 C_1 D_1$	0.00
55	$\xrightarrow{+ (H^+ + e^-)} *HOCH_2OH \xrightarrow{*OH} *CH_2OH \xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$O_1C_2O_1B_{C_1}^1$	-0.95
54	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ OH	$O_1 C_2 O_1 D_{C_1}$	0.00
54	$\xrightarrow{+ (H^+ + e^-)} *CH_2OH \xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$O_1C_2O_1B_{C_1}^3$	-0.95
55	$ \begin{array}{c} - *OH \\ *CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{+ (H^+ + e^-)} *OCH_2OH \end{array} $	$O_1 C_2 O_1 D_{C_1}$	0.00
55	$\xrightarrow{+ (H^+ + e^-)} *CH_3O \xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$_{O_{1}C_{3}}B_{O_{1}}^{3}$	-0.95
56	$ \stackrel{\text{+ OH}}{\overset{\text{+ (H^+ + e^-)}}{\overset{\text{+ COOH}}{\overset{\text{+ (H^+ + e^-)}}{\overset{\text{+ (H^+ + e^-)}}{\text{+ (H^+ + e$	$O_1C_3D_{O_1}$	-0.50
96	*CH ₂ OH \longrightarrow *CH ₂ OH \longrightarrow *CH ₃ OH	$\sim a^{-R^1}$	-0.95
	$ \begin{array}{c} - *OH \\ *CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{+ (H^+ + e^-)} *OCH_2OH \end{array} $	$O_1C_2B_{O_1C_1}^1$	-0.99
57	*CO ₂ \longrightarrow *COOH \longrightarrow *HCOOH \longrightarrow *OCH ₂ OH $\xrightarrow{*}$ *CH ₂ O $\xrightarrow{+ (H^+ + e^-)}$ *CH ₃ O $\xrightarrow{+ (H^+ + e^-)}$ *CH ₃ OH	p1	-0.95
•	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOHOH	$O_1 C_2 B^1_{C_1 O_1}$	-0.95
58	*CO ₂ *COOH **HCOOH **HCOHOH $\xrightarrow{+ (H^{+} + e^{-})} *HOCH_{2}OH \xrightarrow{*CH} *CH_{3}OH$	n3	1.05
	* CO_2 * $\mathrm{HOCH}_2\mathrm{OH}$ $\xrightarrow{-\mathrm{*OH}}$ * $\mathrm{CH}_3\mathrm{OH}$ * CO_2 * $\xrightarrow{+\mathrm{(H}^+ + e^-)}$ * COOH * $\xrightarrow{+\mathrm{(H}^+ + e^-)}$ * HCOOH * $\xrightarrow{+\mathrm{(H}^+ + e^-)}$ * HCOHOH	$O_1 C_1 O_1 C_2 B^3$	-1.05
59		n1	1.05
	$\xrightarrow{+ (H^+ + e^-)} *HOCH_2OH \xrightarrow{- *OH} *CH_2OH \xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$O_1C_1O_1C_1B_{C_1}^1$	-1.05
60	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{+ (H^+ + e^-)} *HCOHOH$		

Table S3 - Continued from previous page

Index	Reaction path	Path name	\mathbf{U}_{min} (V)
	$\xrightarrow{+ (H^+ + e^-)} *CH_2OH \xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$O_1C_1O_1C_1B_{C_1}^3$	-1.05
61	*CO ₂ $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *COOH $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *HCOOH $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *HCOHOH	- 1	
	$\xrightarrow{*}$ *HCOH $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ OH $\xrightarrow{+ (H^+ + e^-)}$ *CH ₃ OH	$O_1C_1O_1B_{C_2}^1$	-1.05
62	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ O	-	
	$+ (H^{+} + e^{-}) * CH_{2}OH \xrightarrow{+ (H^{+} + e^{-})} * CH_{3}OH$	$O_1C_2B_{O_1C_1}^3$	-0.95
63	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ O	*1*2 O[O]	
	$+ (H^{+} + e^{-}) * CH_{3}O \xrightarrow{+ (H^{+} + e^{-})} * CH_{3}OH$	$O_1C_2B_{C_1O_1}^3$	-0.95
64	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOH	1 2 0101	
	$\xrightarrow{+ (H^+ + e^-)} *CH_2OH \xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$O_1C_1O_1B_{C_2}^3$	-0.95
65	* $CO_2 \xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{- *OH}$ *CHO	~ 2	
	$+ (H^{+} + e^{-}) * CH_{2}O \xrightarrow{+ (H^{+} + e^{-})} * CH_{2}OH \xrightarrow{+ (H^{+} + e^{-})} * CH_{3}OH$	$O_1C_1B^1_{C_1O_1C_1}$	-0.95
66	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{- *OH} *CHO$		
	$\xrightarrow{+ (H^{+} + e^{-})} *CH_{2}O \xrightarrow{+ (H^{+} + e^{-})} *CH_{3}O \xrightarrow{+ (H^{+} + e^{-})} *CH_{3}OH$	$_{O_1C_1}B^1_{C_2O_1}$	-0.95
67	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{- *OH} *CHO$		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HCOH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$O_1C_1B_{O_1C_2}^1$	-1.78
68	$*\text{CO}_2 \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{COOH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{COHOH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HCOHOH}$		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HOCH}_2\text{OH} \xrightarrow{- *\text{OH}} *\text{CH}_3\text{OH}$	$O_2C_3B^3$	-1.22
69	*CO ₂ $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *COOH $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *COHOH $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *HCOHOH		
	$\xrightarrow{+ \text{ (H^+ + e^-)}} *\text{HOCH}_2\text{OH} \xrightarrow{- *\text{OH}} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H^+ + e^-)}} *\text{CH}_3\text{OH}$	$O_2C_2B_{C_1}^1$	-1.22
70	$*{\rm CO}_2 \xrightarrow{+({\rm H}^+ + {\rm e}^-)} *{\rm COOH} \xrightarrow{+({\rm H}^+ + {\rm e}^-)} *{\rm COHOH} \xrightarrow{+({\rm H}^+ + {\rm e}^-)} *{\rm HCOHOH}$		
	$\xrightarrow{+ (H^+ + e^-)} *CH_2OH \xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$O_2 C_2 B_{C_1}^3$	-1.22
71	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *COHOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOHOH		
	$\xrightarrow{-*OH} *HCOH \xrightarrow{+ (H^+ + e^-)} *CH_2OH \xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$O_2C_1B_{C_2}^1$	-1.22
72	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *COHOH $\xrightarrow{- * OH}$ *HCOH		
	$\xrightarrow{+ (H^{+} + e^{-})} *CH_{2}OH \xrightarrow{+ (H^{+} + e^{-})} *CH_{3}OH$	$O_2C_1B_{C_2}^3$	-1.22
73	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *COHOH \xrightarrow{- *OH} *COH$		
	$\xrightarrow{+ (H^{+} + e^{-})} *HCOH \xrightarrow{+ (H^{+} + e^{-})} *CH_{2}OH \xrightarrow{+ (H^{+} + e^{-})} *CH_{3}OH$ $\xrightarrow{+ (H^{+} + e^{-})} \xrightarrow{+ (H^{+} + e^{-})} *(H^{+} + e^{-})$	$O_2B^1_{C_3}$	-1.22
74	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *CHO $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ O	_	
	$\xrightarrow{+ (H^+ + e^-)} *CH_2OH \xrightarrow{+ (H^+ + e^-)} *CH_3OH$ $*GO_{\bullet} \xrightarrow{+ (H^+ + e^-)} *GO_{\bullet} \xrightarrow{+ (H^+ + e^-)} *GU_{\bullet} + (H^+ $	$O_1C_1B_{C_1O_1C_1}^3$	-0.81
75	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *CHO $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ O	. 0	
70	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{O} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$ $*\text{CO}_2 \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{COOH} \xrightarrow{- *\text{OH}} *\text{CHO} \xrightarrow{- *\text{OH}} *\text{CHO}$	$_{O_1C_1}B^3_{C_2O_1}$	-0.81
76	*CO ₂ \longrightarrow *COOH \longrightarrow *CHO \longrightarrow *HCOH $\xrightarrow{+ (H^+ + e^-)} *CH_2OH \xrightarrow{+ (H^+ + e^-)} *CH_3OH$	D3	1.70
	\longrightarrow "CH ₂ OH \longrightarrow "CH ₃ OH	$O_1C_1B_{O_1C_2}^3$	-1.78

Table S3 - Continued from previous page

Index	Reaction path	Path name	\mathbf{U}_{min} (V)
77	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *COH $\xrightarrow{+ (H^+ + e^-)}$ *HCOH		
	$\frac{+ (H^{+} + e^{-})}{} * CH_{2}OH \xrightarrow{+ (H^{+} + e^{-})} * CH_{3}OH$	$_{O_{2}}B_{C_{3}}^{3}$	-1.52
78	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{- *_{OH}}$ *CO $\xrightarrow{+ (H^+ + e^-)}$ *CHO	2 03	
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} \text{*CH}_2\text{O} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} \text{*CH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} \text{*CH}_3\text{OH}$	$O_1 B^1_{C_2 O_1 C_1}$	-1.96
79	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{*OH} *CO \xrightarrow{+ (H^+ + e^-)} *CHO$		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} \text{*CH}_2\text{O} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} \text{*CH}_3\text{O} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} \text{*CH}_3\text{OH}$	$_{O_{1}}B^{1}_{C_{3}O_{1}}$	-1.96
80	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{*OH} *CO \xrightarrow{+ (H^+ + e^-)} *CHO$	$C_1 C_3 C_1$	
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HCOH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$O_1 B^1_{C_1 O_1 C_2}$	-1.96
81	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{*COU} *CO \xrightarrow{+ (H^+ + e^-)} *COH$	$C_1 C_1 C_1 C_2$	
	$\xrightarrow{\text{+ (H^+ + e^-)}} \text{*HCOH} \xrightarrow{\text{+ (H^+ + e^-)}} \text{*CH}_2\text{OH} \xrightarrow{\text{+ (H^+ + e^-)}} \text{*CH}_3\text{OH}$	$O_1B^1_{O_1C_3}$	-1.96
82	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ OH	$O_1 O_1 O_3$	
	$\xrightarrow{+ \text{ (H^+ + e^-)}} *\text{HOCH}_2\text{OH} \xrightarrow{- *\text{OH}} *\text{CH}_3\text{OH}$	$C_1O_1C_1O_1C_1B^3$	-0.18
83	*CO ₂ $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *HCOO $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *HCOOH $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *OCH ₂ OH		
	$\xrightarrow{+ \text{ (H^+ + e^-)}} *\text{HOCH}_2\text{OH} \xrightarrow{*\text{OH}} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H^+ + e^-)}} *\text{CH}_3\text{OH}$	$C_1O_1C_1O_1B_{C_1}^1$	-0.18
84	*CO ₂ $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *HCOO $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *HCOOH $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *OCH ₂ OH		
	$\xrightarrow{+ \text{ (H^+ + e^-)}} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H^+ + e^-)}} *\text{CH}_3\text{OH}$	$C_1O_1C_1O_1B_{C_1}^3$	-0.18
85	*CO ₂ $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *HCOO $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *HCOOH $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *OCH ₂ OH		
	$\xrightarrow{+\text{ (H^+ + e^-)}}$ *CH ₃ O $\xrightarrow{+\text{ (H^+ + e^-)}}$ *CH ₃ OH	$C_1 O_1 C_2 B_{O_1}^3$	-0.18
86	*CO ₂ $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *HCOO $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *HCOOH $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *OCH ₂ OH		
	$\xrightarrow{-\text{*OH}} \text{*CH}_2\text{O} \xrightarrow{+\text{(H}^+ + \text{e}^-)} \text{*CH}_2\text{OH} \xrightarrow{+\text{(H}^+ + \text{e}^-)} \text{*CH}_3\text{OH}$	$C_1 O_1 C_1 B_{O_1 C_1}^1$	-0.18
87	*CO ₂ $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *HCOO $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *HCOOH $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *OCH ₂ OH		
	$\xrightarrow{-\text{*OH}}$ *CH ₂ O $\xrightarrow{+\text{(H}^+ + e^-)}$ *CH ₃ O $\xrightarrow{+\text{(H}^+ + e^-)}$ *CH ₃ OH	$C_1 O_1 C_1 B^1_{C_1 O_1}$	-0.18
88	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{+ (H^+ + e^-)} *HCOHOH$		
	$\xrightarrow{+ (H^+ + e^-)} *HOCH_2OH \xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$_{C_1O_2C_2}B^3$	-1.05
89	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{+ (H^+ + e^-)} *HCOHOH$		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)}$ *HOCH ₂ OH $\xrightarrow{- \text{ *OH}}$ *CH ₂ OH $\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)}$ *CH ₃ OH	$_{C_1O_2C_1}B^1_{C_1}$	-1.05
90	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{+ (H^+ + e^-)} *HCOHOH$		
	$\xrightarrow{+\text{ (H}^+ + e^-)} *\text{CH}_2\text{OH} \xrightarrow{+\text{ (H}^+ + e^-)} *\text{CH}_3\text{OH}$	$C_1 O_2 C_1 B_{C_1}^3$	-1.05
91	*CO ₂ $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *HCOO $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *HCOOH $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *HCOHOH		
	$\xrightarrow{\text{*OH}} \text{*HCOH} \xrightarrow{\text{+-(H^+ + e^-)}} \text{*CH}_2\text{OH} \xrightarrow{\text{+-(H^+ + e^-)}} \text{*CH}_3\text{OH}$	${}_{C_1O_2}B^1_{C_2}$	-1.05
92	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{- *OH} \xrightarrow{- *OH} *CH_2O$		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$_{C_1O_1C_1}B^3_{O_1C_1}$	-0.18
93	*CO ₂ $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *HCOO $\xrightarrow{+ \text{ (H^+ + e^-)}}$ *HCOOH $\xrightarrow{- \text{ (H^+ + e^-)}}$ *CH ₂ O		
	- *OH	inued on next page	

Table S3 - Continued from previous page

Index	Reaction path	Path name	\mathbf{U}_{min} (V)
	$\xrightarrow{+ (H^{+} + e^{-})} *CH_{3}O \xrightarrow{+ (H^{+} + e^{-})} *CH_{3}OH$	$C_1O_1C_1B_{C_1O_1}^3$	-0.18
94	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{- *OH} *HCOH$		
	$\xrightarrow{+ (H^{+} + e^{-})} *CH_{2}OH \xrightarrow{+ (H^{+} + e^{-})} *CH_{3}OH$	$C_{1}O_{2}B_{C_{2}}^{3}$	-0.87
95	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{*OH} *CHO$	1 2 02	
	$\xrightarrow{+ (H^+ + e^-)} *\mathbf{CH}_2\mathbf{O} \xrightarrow{+ (H^+ + e^-)} *\mathbf{CH}_2\mathbf{OH} \xrightarrow{+ (H^+ + e^-)} *\mathbf{CH}_3\mathbf{OH}$	$C_{1}O_{1}B_{C_{1}O_{1}C_{1}}^{1}$	-0.81
96	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{*OH} *CHO$		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{O} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{O} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$C_{1}O_{1}B_{C_{2}O_{1}}^{1}$	-0.81
97	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{*OH} *CHO$	0 0 0 2 0 1	
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HCOH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$C_{1}O_{1}B_{O_{1}C_{2}}^{1}$	-1.78
98	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *OCH_2O \xrightarrow{+ (H^+ + e^-)} *OCH_2OH$		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HOCH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$C_2O_2C_1B^3$	-1.01
99	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *OCH_2O \xrightarrow{+ (H^+ + e^-)} *OCH_2OH$		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{HOCH}_2\text{OH} \xrightarrow{- *\text{OH}} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$C_2 O_2 B_{C_1}^1$	-1.01
100	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *OCH_2O \xrightarrow{+ (H^+ + e^-)} *OCH_2OH$		
	$\xrightarrow{\text{+ (H^+ + e^-)}} \text{*CH}_2\text{OH} \xrightarrow{\text{+ (H^+ + e^-)}} \text{*CH}_3\text{OH}$	$C_2 O_2 B_{C_1}^3$	-1.01
101	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *OCH_2O \xrightarrow{+ (H^+ + e^-)} *OCH_2OH$		
	$\xrightarrow{+ \text{ (H}^+ + e^-)} *\text{CH}_3\text{O} \xrightarrow{+ \text{ (H}^+ + e^-)} *\text{CH}_3\text{OH}$	$C_2O_1C_1B_{O_1}^3$	-1.01
102	$*{ m CO}_2 \xrightarrow{+ ({ m H}^+ + { m e}^-)} *{ m HCOO} \xrightarrow{+ ({ m H}^+ + { m e}^-)} *{ m OCH}_2{ m O} \xrightarrow{+ ({ m H}^+ + { m e}^-)} *{ m OCH}_2{ m OH}$		
	$\xrightarrow{-\text{*OH}} \text{*CH}_2\text{O} \xrightarrow{+\text{(H}^+ + \text{e}^-)} \text{*CH}_2\text{OH} \xrightarrow{+\text{(H}^+ + \text{e}^-)} \text{*CH}_3\text{OH}$	$C_{2O_1}B^1_{O_1C_1}$	-1.01
103	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *OCH_2O \xrightarrow{+ (H^+ + e^-)} *OCH_2OH$		
	$\xrightarrow{-\text{*OH}}$ *CH ₂ O $\xrightarrow{+\text{(H}^+ + e^-)}$ *CH ₃ O $\xrightarrow{+\text{(H}^+ + e^-)}$ *CH ₃ OH	$C_{2}O_{1}B_{C_{1}O_{1}}^{1}$	-1.01
104	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ O $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ O		
	$\xrightarrow{+ (H^{+} + e^{-})} *CH_{2}OH \xrightarrow{+ (H^{+} + e^{-})} *CH_{3}OH$	$C_2O_1B_{O_1C_1}^3$	-1.01
105	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ O $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ O		
	$+ (H^{+} + e^{-}) * CH_{3}O \xrightarrow{+ (H^{+} + e^{-})} * CH_{3}OH$	$C_2O_1B_{C_1O_1}^3$	-1.01
106	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *CHO $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ O		
	$\xrightarrow{+ (H^+ + e^-)} *CH_2OH \xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$C_1O_1B_{C_1O_1C_1}^3$	-0.81
107	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *CHO $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ O		
	$+ (H^{+} + e^{-}) * CH_{3}O \xrightarrow{+ (H^{+} + e^{-})} * CH_{3}OH$	$C_1O_1B_{C_2O_1}^3$	-0.81
108	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *CHO $\xrightarrow{+ (H^+ + e^-)}$ *HCOH	- 2 - 1	
	$+ (H^{+} + e^{-}) * CH_{2}OH \xrightarrow{+ (H^{+} + e^{-})} * CH_{3}OH$	$C_{1}O_{1}B_{O_{1}C_{2}}^{3}$	-1.78
109	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *CO $\xrightarrow{+ (H^+ + e^-)}$ *CHO $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ O		
	$\xrightarrow{+ (H^+ + e^-)} *CH_2OH \xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$O_1 B_{C_2 O_1 C_1}^3$	-1.20
-		- 2 - 1 - 1	I .

Table S3 - Continued from previous page

Index	Table S3 – Continued from previous page Reaction path	Path name	\mathbf{U}_{min} (V)
110	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *CO $\xrightarrow{+ (H^+ + e^-)}$ *CHO $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ O	1 atm name	Omin (V)
110	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
		$O_1 B_{C_3 O_1}^3$	-1.20
111	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *CO \xrightarrow{+ (H^+ + e^-)} *CHO \xrightarrow{+ (H^+ + e^-)} *HCOH$		
	$\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ OH $\xrightarrow{+ (H^+ + e^-)}$ *CH ₃ OH	$O_1 B_{C_1 O_1 C_2}^3$	-1.78
112	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *CO $\xrightarrow{+ (H^+ + e^-)}$ *COH $\xrightarrow{+ (H^+ + e^-)}$ *HCOH		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$O_1 B_{O_1 C_3}^3$	-1.20
113	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{+ (H^+ + e^-)} *OCH_2OH$		
	$\xrightarrow{+ \text{ (H}^+ + e^-)} \text{*CH}_3\text{OH}$	$O_1C_3C^3$	-0.95
114	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{+ (H^+ + e^-)} *OCH_2OH$		
	$\xrightarrow{-*O}$ *CH ₂ OH $\xrightarrow{+ (H^+ + e^-)}$ *CH ₃ OH	$O_1C_2C_{C_1}^1$	-0.95
115	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{* O}$ *CH ₂ OH		
	$\xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$O_1C_2C_{C_1}^3$	-0.95
116	* $CO_2 \xrightarrow{+ (H^+ + e^-)} *COOH \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{- *O} *HCOH$	0102 1 61	
	$\xrightarrow{+ (H^{+} + e^{-})} *CH_{2}OH \xrightarrow{+ (H^{+} + e^{-})} *CH_{3}OH$	$O_1C_1C_{C_2}^1$	-1.41
117	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{+ (H^+ + e^-)}$ *HCOH $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ OH	$O_1C_1C_2$	-1.41
111	$\xrightarrow{+ (H^+ + e^-)} *CH_3OH$	C3	0.26
118	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *COOH $\xrightarrow{*}$ *COH $\xrightarrow{+ (H^+ + e^-)}$ *HCOH	$O_1C_1C_{C_2}^3$	-2.36
110	$\xrightarrow{+ (H^+ + e^-)} *CH_2OH \xrightarrow{+ (H^+ + e^-)} *CH_3OH$	1	
440	*CH ₂ OH $\xrightarrow{*}$ *CH ₃ OH *CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ OH	$O_1 C_{C_3}^1$	-2.06
119		C3	0.10
	$\xrightarrow{+ (H^+ + e^-)} *CH_3OH$ $\xrightarrow{+ (H^+ + e^-)} *(H^+ + e^-)$	$C_1 O_1 C_2 C^3$	-0.18
120	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ OH	_	
	$\xrightarrow{-*O} {^*CH_2OH} \xrightarrow{+ (H^+ + e^-)} {^*CH_3OH}$	$C_1 O_1 C_1 C_{C_1}^1$	-0.18
121	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *HCOOH $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ OH		
	$\xrightarrow{+ (\mathrm{H^+ + e^-})} *\mathrm{CH_3OH}$	$C_1 O_1 C_1 C_{C_1}^3$	-0.18
122	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *HCOOH \xrightarrow{- *O} *HCOH$		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$C_{1}O_{1}C_{C_{2}}^{1}$	-1.41
123	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *OCH_2O \xrightarrow{+ (H^+ + e^-)} *OCH_2OH$	_	
	$\xrightarrow{+ \text{ (H}^+ + e^-)} *\text{CH}_3\text{OH}$	$C_2O_1C_1C^3$	-1.01
124	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ O $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ OH		
	$\xrightarrow{*}$ *CH ₂ OH $\xrightarrow{+ (H^+ + e^-)}$ *CH ₃ OH	$C_{2}O_{1}C_{C_{1}}^{1}$	-1.01
125	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ O $\xrightarrow{+ (H^+ + e^-)}$ *CH ₃ O		
	$\xrightarrow{+ (H^{+} + e^{-})} *CH_{3}OH$	~ C3	1.01
126	*CO ₂ $\xrightarrow{+ (H^+ + e^-)}$ *HCOO $\xrightarrow{+ (H^+ + e^-)}$ *OCH ₂ O $\xrightarrow{- *O}$ *CH ₂ O	$C_{3}C_{O_{1}}^{3}$	-1.01
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

Table S3 - Continued from previous page

Index	Reaction path	Path name	\mathbf{U}_{min} (V)
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$C_2 C^1_{O_1 C_1}$	-1.01
127	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{+ (H^+ + e^-)} *OCH_2O \xrightarrow{- *O} *CH_2O$		
	$\xrightarrow{+ (H^{+} + e^{-})} *CH_{3}O \xrightarrow{+ (H^{+} + e^{-})} *CH_{3}OH$	$C_2 C^1_{C_1 O_1}$	-1.01
128	*CO ₂ $\xrightarrow{+ \text{ (H}^+ + e^-)}$ * HCOO $\xrightarrow{- \text{ *O}}$ *CH ₂ O $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *CH ₂ OH		
	$\xrightarrow{+ (H^{+} + e^{-})} *CH_{3}OH$	$C_2 C_{O_1 C_1}^3$	-0.45
129	*CO ₂ $\xrightarrow{+ \text{ (H}^+ + e^-)}$ * HCOO $\xrightarrow{- \text{ *O}}$ *C H ₂ O $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *CH ₃ O		
	$\xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$C_2 C_{C_1 O_1}^3$	-0.45
130	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{- *O} *CHO \xrightarrow{+ (H^+ + e^-)} *CH_2O$		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$C_1 C^1_{C_1 O_1 C_1}$	-0.81
131	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{- *O} *CHO \xrightarrow{+ (H^+ + e^-)} *CH_2O$		
	$\xrightarrow{+ (H^{+} + e^{-})} *CH_{3}O \xrightarrow{+ (H^{+} + e^{-})} *CH_{3}OH$	$C_1 C_{C_2 O_1}^1$	-0.81
132	$*CO_2 \xrightarrow{+ (H^+ + e^-)} *HCOO \xrightarrow{- *O} *CHO \xrightarrow{+ (H^+ + e^-)} *HCOH$		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$C_1 C_{O_1 C_2}^1$	-1.78
133	$*{\rm CO}_2 \xrightarrow{+ ({\rm H}^+ + {\rm e}^-)} *{\bf CHO} \xrightarrow{+ ({\rm H}^+ + {\rm e}^-)} *{\bf CH}_2{\bf O} \xrightarrow{+ ({\rm H}^+ + {\rm e}^-)} *{\rm CH}_2{\rm OH}$		
	$\xrightarrow{+ \text{ (H+} + \text{ e}^-)} *\text{CH}_3\text{OH}$	$C_1 C_{C_1 O_1 C_1}^3$	-0.81
134	*CO ₂ $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *CHO $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *CH ₂ O $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *CH ₃ O		
	$\xrightarrow{+\text{ (H}^+ + e^-)} *\text{CH}_3\text{OH}$	$C_1 C_{C_2 O_1}^3$	-0.81
135	*CO ₂ $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *CHO $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *HCOH $\xrightarrow{+ \text{ (H}^+ + e^-)}$ *CH ₂ OH		
	$\xrightarrow{+ (H^+ + e^-)} *CH_3OH$	$C_1 C_{O_1 C_2}^3$	-1.78
136	*CO ₂ $\xrightarrow{-*O}$ *CO $\xrightarrow{+ (H^+ + e^-)}$ *CHO $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ O		
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$C^1_{C_2O_1C_1}$	-1.73
137	*CO ₂ $\xrightarrow{-*O}$ *CO $\xrightarrow{+ (H^+ + e^-)}$ *CHO $\xrightarrow{+ (H^+ + e^-)}$ *CH ₂ O		
	$+ (H^{+} + e^{-}) * CH_{3}O \xrightarrow{+ (H^{+} + e^{-})} * CH_{3}OH$	$C^{1}_{C_{3}O_{1}}$	-1.73
138	$*CO_2 \xrightarrow{-*O} *CO \xrightarrow{+ (H^+ + e^-)} *CHO \xrightarrow{+ (H^+ + e^-)} *HCOH$	-	
	$\xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_2\text{OH} \xrightarrow{+ \text{ (H}^+ + \text{ e}^-)} *\text{CH}_3\text{OH}$	$C^1_{C_1O_1C_2}$	-1.78
139	*CO ₂ $\xrightarrow{-*O}$ *CO $\xrightarrow{+ (H^+ + e^-)}$ *COH $\xrightarrow{+ (H^+ + e^-)}$ *HCOH		
	$\xrightarrow{+ (H^{+} + e^{-})} *CH_{2}OH \xrightarrow{+ (H^{+} + e^{-})} *CH_{3}OH$	$C^1_{O_1C_3}$	-1.73

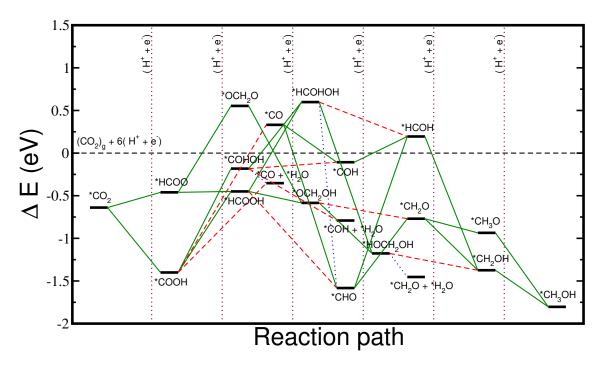


Figure S3: Mechanism type A: The free energy diagram of electrocatalytic reduction of CO_2 to CH_3OH on hematite surface at 0 V (RHE). The vertical lines represents the protonelectron transfer step. The colour code is same as Figure-S2.

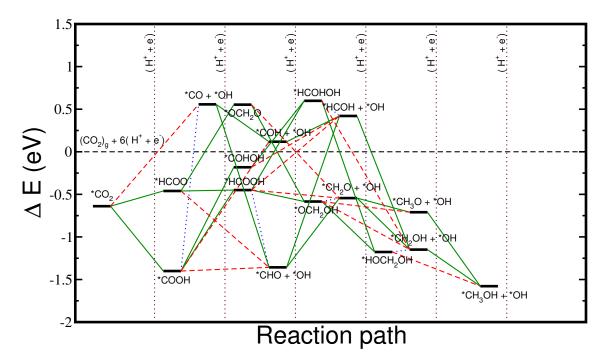


Figure S4: Mechanism type B: The free energy diagram of electrocatalytic reduction of CO_2 to CH_3OH on hematite surface at 0 V (RHE). The vertical lines represents the protonelectron transfer step. The colour code is same as Figure-S2.

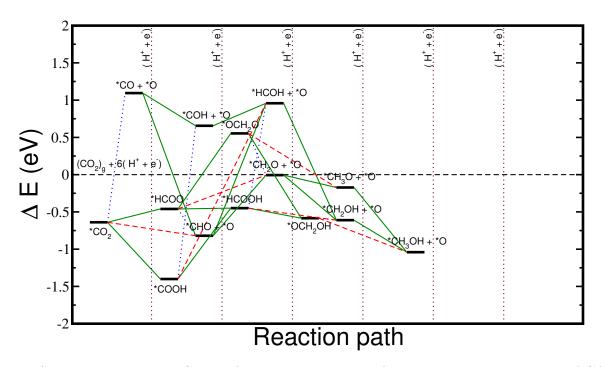


Figure S5: Mechanism type C: The free energy diagram of electrocatalytic reduction of CO_2 to CH_3OH on hematite surface at 0 V (RHE). The vertical lines represents the proton-electron transfer step. The colour code is same as Figure-S2.