Supporting Information

Design Rule for Two-Dimensional van der Waals Heterostructures with

 Unconventional Band AlignmentsYuan Si^{1}, Hong-Yu Wu ${ }^{1}$, Ji-Chun Lian ${ }^{1}$, Wei-Qing Huang ${ }^{1, \#,}$, Wang-Yu Hu ${ }^{2}$, Gui-Fang Huang ${ }^{1, *}$
1. Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
2 School of Materials Science and Engineering, Hunan University, Changsha 410082, China

[^0]

Fig. S1. Stacking patterns of the heterostructures. Top and side views of six different stacking of the group IV-V heterostructures. A and B denote the elements from the group-IV and V, respectively. The unit cells of the monolayer and heterostructure are shown in black dash line.

Fig. S2. Phonon dispersions of four group IV-V heterostructure. The phonon dispersion curves of (a) $\mathrm{CP} / \mathrm{SiN}$, (b) $\mathrm{CAs} / \mathrm{GeN}$, (c) $\mathrm{CSb} / \mathrm{SnN}$ and (d) $\mathrm{SiAs} / \mathrm{GeP}$.

Fig. S3. Electronic structures of group IV-V monolayers. The projected band structures of 16 group IV-V monolayers. The red dots denote the p_{x} and p_{y} orbitals, while blue and green dots represent p_{z} and s orbitals, respectively. Black dash line denotes the Fermi level.

Fig. S4. Electronic structures of multilayer $\mathbf{C P}$ and GeP. Projected band structures of bilayer and trilayer of (a, b) CP and (c, d) GeP, respectively. The red dots represent the p_{x} and p_{y} orbitals, while blue and green dots represent p_{z} and s orbitals, respectively. Black dashed line represents the Fermi level. $\Delta(\mathrm{eV})$ is the energy difference between the QB with highest and lowest energy at Γ point.

Fig. S5. Schematic diagrams of band alignment of three group IV-V semiconductors. Band edge positions of (a) CP (b) GeP and (c) SiAs monolayer and bilayer, respectively. The vacuum level is set to 0 eV . The red dashed line represents the Fermi level.

Fig. S6. The interfacial charge transfer for the group IV-V heterostructures (a1-d1) Charge density difference of (a1) $\mathrm{CP} / \mathrm{SiN}$, (b1) $\mathrm{CAs} / \mathrm{GeN}$, (c1) $\mathrm{CSb} / \mathrm{SnN}$ and (d1) $\mathrm{SiAs} / \mathrm{GeP}$ heterostructures with the isovalue of $0.007 \mathrm{e} / \AA^{3}$. The bottom of the $\mathrm{AB}\left(\mathrm{A}_{1} \mathrm{~B}_{1} / \mathrm{A}_{2} \mathrm{~B}_{2}\right)$ heterostructure is $\mathrm{A}_{1} \mathrm{~B}_{1}$ layer, while the upper is $\mathrm{A}_{2} \mathrm{~B}_{2}$ layer. Green and orange block represent electron accumulation and depletion in the space. (a2-d2) The corresponding profiles of planar averaged charge density difference (red line) and planar averaged self-consistent electrostatic potential (blue line) displayed.

Fig. S7. Distributions of the band edge orbitals of group IV-V heterostructures. Charge distributions of VBM states (blue) and CBM states (pink) of (a) CP/SiN, (b) CAs/GeN and (c) $\mathrm{SiAs} / \mathrm{GeP}$ heterostructures with an isovalue of $0.005 \mathrm{e} / \AA^{3}$. The bottom of the $\mathrm{AB}\left(\mathrm{A}_{1} \mathrm{~B}_{1} / \mathrm{A}_{2} \mathrm{~B}_{2}\right)$ heterostructure is $\mathrm{A}_{1} \mathrm{~B}_{1}$ layer, while the upper is $\mathrm{A}_{2} \mathrm{~B}_{2}$ layer.

Fig. S8. Optical properties of group IV-V heterostructures. The absorption spectrums of (a) $\mathrm{CP} / \mathrm{SiN}$, (b) $\mathrm{CAs} / \mathrm{GeN}$, (c) $\mathrm{CSb} / \mathrm{SnN}$ and (d) $\mathrm{SiAs} / \mathrm{GeP}$ heterostructures and corresponding monolayers. The green, red and blue lines represent the $A B\left(A_{1} B_{1} / A_{2} B_{2}\right)$ heterostructure, $A_{1} B_{1}$ layer and $\mathrm{A}_{2} \mathrm{~B}_{2}$ layer, respectively.

Fig. S9. Effects of different stacking patterns on electronic structure of $\mathrm{SiAs} / \mathrm{GeP}$ heterostructure. (a, b) Projected band structures (left panel) and corresponding charge distributions (right panel) of VBM states (blue) and CBM states (pink) of (a) stacking IV and (b) VI of SiAs/GeP heterostructure. The upper of the heterostructure is GeP layer, and the bottom is SiAs layer. The isovalues of charge distributions are $0.005 \mathrm{e} / \AA^{3}$.

Fig. S10. Effects of vertical strain on the distributions of the band edge orbitals of $\mathrm{SiAs} / \mathrm{GeP}$ heterostructure. The charge distribution of VBM states (blue) and CBM states (pink) for (a-c) decrease and (d-f) increase of interlayer distance. The upper of the heterostructure is GeP layer, and the bottom is SiAs layer. The isovalues of charge distributions are $0.005 \mathrm{e} / \AA^{3}$.

$$
\varepsilon=+4 \%
$$

VBM states
CBM states
(a)

(c)

(d)

$$
\varepsilon=-3 \%
$$

$$
\varepsilon=-4 \%
$$

VBM states
(e)

(f)

(g)

(h)

Fig. S11. Effects of biaxial strain on the distributions of the band edge orbitals of $\operatorname{SiAs} / \mathbf{G e P}$ heterostructure. The charge distribution of VBM states (blue) and CBM states (pink) for (a-d) tensile and (e-h) compressive biaxial strain. The upper of the heterostructure is GeP layer, and the bottom is SiAs layer. The isovalues of charge distributions are $0.005 \mathrm{e} / \AA^{3}$.

Fig. S12. Effects of electric field on the distributions of the band edge orbitals of $\mathbf{S i A s} / \mathbf{G e P}$ heterostructure. The charge distribution of VBM states (blue) and CBM states (pink) for (a-d) positive and (e-h) negative electric field. The upper of the heterostructure is GeP layer, and the bottom is SiAs layer. The isovalues of charge distributions are $0.005 \mathrm{e} / \AA^{3}$.

Table S1. Calculated lattice constant (\AA) and band gap $E_{g}(\mathrm{eV})$ for group IV-V AB monolayers.

Monolayer	$\mathrm{a}(\AA)$	$\mathrm{E}_{\mathrm{g}}(\mathrm{eV})$
CN	2.37	5.18
CP	2.88	2.71
CAs	3.10	1.91
CSb	3.39	0.83
SiN	2.89	2.74
SiP	2.22	2.22
SiAs	3.69	2.27
SiSb	4.01	1.77
GeN	3.09	2.33
GeP	3.65	2.04
GeAs	3.81	1.84
GeSb	4.11	1.17
SnN	3.41	0.94
SnP	3.94	1.97
SnAs	4.07	1.79
SnSb	4.37	1.31

Table S2. The energy difference $\Delta E(\mathrm{meV})$ for six stacking configurations of group IV-V AB vdW heterostructures.

Heterostructure	I	II	III	IV	V	VI
$\mathrm{CP} / \mathrm{SiN}$	30.22	2.53	6.52	0	10.05	29.60
$\mathrm{CAs} / \mathrm{GeN}$	39.73	5.12	2.00	0	5.81	39.63
$\mathrm{CSb} / \mathrm{SnN}$	56.66	6.73	1.36	0	4.71	57.30
$\mathrm{SiAs} / \mathrm{GeP}$	71.79	3.70	7.63	11.16	0	71.60

Table S3. Calculated lattice constant $a(\AA)$ and equilibrium interlayer distance $d_{0}(\AA)$ of four group IV-V heterostructures obtained for different functionals.

Heterostructure	$\mathrm{PBE}+\mathrm{D} 3$		optPBE-vdW		optB86b-vdW	optB88-vdW		
	$a(\AA)$	$d_{0}(\AA)$	$a(\AA)$	$d_{0}(\AA)$	$a(\AA)$	$d_{0}(\AA)$	$a(\AA)$	$d_{0}(\AA)$
	2.89	3.36	2.91	3.40	2.89	3.39	2.91	3.40
$\mathrm{CAs} / \mathrm{GeN}$	3.10	3.30	3.12	3.29	3.10	3.29	3.10	3.31
$\mathrm{CSb} / \mathrm{SnN}$	3.40	3.21	3.43	3.21	3.40	3.20	3.43	3.20
$\mathrm{SiAs} / \mathrm{GeP}$	3.67	3.15	3.70	3.12	3.66	3.10	3.68	3.12

Table S4. The interfacial charge transfer for four group IV-V heterostructures. The positive values and negative values represent charge accumulation and depletion, respectively.

Heterostructure	Charge transfer (e)	
	$\mathrm{A}_{1} \mathrm{~B}_{1}$	$\mathrm{~A}_{2} \mathrm{~B}_{2}$
$\mathrm{CP} / \mathrm{SiN}$	-0.005	0.005
$\mathrm{CAs} / \mathrm{GeN}$	-0.011	0.011
$\mathrm{CSb} / \mathrm{SnN}$	-0.056	0.056
$\mathrm{SiAs} / \mathrm{GeP}$	-0.007	0.007

[^0]: \#.Corresponding author. E-mail address: wqhuang@hnu.edu.cn
 *.Corresponding author. E-mail address: gfhuang@hnu.edu.cn

