Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

PCCP

Electronic Supplementary Information

Terphenyl Backbone-Based Donor- π -Acceptor Dyads: Geometric Isomer Effects on Intramolecular Charge Transfer

Min-Ji Kim, Mina Ahn, Jun Ho Shim,* and Kyung-Ryang Wee*

Department of Chemistry, Daegu University, Gyeongsan 38453, Republic of Korea. E-mail: krwee@daegu.ac.kr; junhoshim@daegu.ac.kr

Contents	Page
Scheme S1. Synthetic scheme for the preparation of O , M and P	S2
Figure S1. ¹ H-NMR spectra	S3-8
Figure S2. ¹³ C{ ¹ H}-NMR spectra	S3-8
Figure S3. GC-MS data of O , M , and P	S9
Table S1. Crystal data and structure refinement for M	S10
Table S2. Selected bond lengths [Å], bond angles [º], and torsion angles [º] of M	S11
Figure S4. Single-crystal X-ray structure of M	S11
Figure S5. CV curves of O , M , and P in CH ₂ Cl ₂	S12
Figure S6. absorption and emission spectra of TPA, IMI, and all dyads in solution	S12
Figure S7. absorption and emission spectra of O , M , and P in the solid state	S12
Figure S8. Fluorescence lifetimes (${}^{ au_{F}}$)	S13
Table S3. Spectroscopic parameters in various solvents	S13
Figure S9. Absorption spectra in various solvents	S14
Figure S10. Lippert-Mataga plots	S14
Table S4. Dipole moment value in the ground and excited states	S15
Figure S11. Spectroelectrochemical measurements	S15
Figure S12. Transient absorption spectra of dyads (a) \mathbf{O} , (b) \mathbf{P} in CH_2Cl_2	S15
DFT/TD-DFT Calculation Details	S16
Table S5. DFT calculation: Cartesian coordinates for optimized structure	S17-S25
Figure S13. DFT calculation: Energy levels and isodensity plots	S17-S25
Figure S14. TD-DFT calculation: Electronic transition and simulated spectra	S17-S25
Table S6. TD-DFT calculation: Transition assignment	S17-S25
Reference	S26

Scheme S1. Synthetic scheme for the preparation of three terphenyl backbone based donor- π -acceptor dyads (**O**, **M** and **P**).

Figure S1-1. ¹H-NMR spectrum of TPAB-Br-O in CDCl₃ (500MHz, 293K)

Figure S2-1. ¹³C{¹H}-NMR spectrum of **TPAB-Br-O** in CDCl₃ (125MHz, 293K)

Figure S1-2. ¹H-NMR spectrum of **O** in CDCl₃ (500MHz, 293K)

Figure S2-2. ¹³C{¹H}-NMR spectrum of **O** in CDCl₃ (125MHz, 293K)

Figure S1-3. ¹H-NMR spectrum of **TPAB-Br-M** in CDCl₃ (500MHz, 293K)

80	84	
44	N	88888686888888
Ý	1	

Figure S2-3. ¹³C{¹H}-NMR spectrum of **TPAB-Br-M** in CDCl₃ (125MHz, 293K)

Figure S1-4. ¹H-NMR spectrum of M in CDCl₃ (500MHz, 293K)

Figure S2-4. ${}^{13}C{}^{1}H$ -NMR spectrum of **M** in CDCl₃ (125MHz, 293K)

Figure S1-5. ¹H-NMR spectrum of **TPAB-Br-P** in CDCl₃ (500MHz, 293K)

Figure S2-5. ¹³C{¹H}-NMR spectrum of **TPAB-Br-P** in CDCl₃ (125MHz, 293K)

Figure S1-6. ¹H-NMR spectrum of **P** in CDCl₃ (500MHz, 293K)

Figure S2-6. ${}^{13}C{}^{1}H$ -NMR spectrum of **P** in CDCl₃ (125MHz, 293K)

Figure S3. GC-MS data of O, M, and P

	М
Empirical formula	$C_{43}H_{31}N_3$
Formula weight	589.74
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	$a = 9.7503(5)$ Å $\alpha = 65.086(2)^{\circ}$ $b = 18.6569(11)$ Å $\beta = 76.413(2)^{\circ}$ $c = 19.6036(11)$ Å $\gamma = 80.311(2)^{\circ}$
Volume	3134.0(3) Å ³
Z, Calculated density	4, 1.250 mg/m ³
μ	0.073 mm ⁻¹
<i>F</i> (000)	1240
Crystal size	$0.26 \times 0.14 \times 0.1 \text{ mm}$
θ range for data collection	1.98 to 28.41°
Limiting indices	$-13 \le h \le 13$ $-24 \le k \le 24$ $-26 \le l \le 26$
Max. and min. transmission	0.993 and 0.981
Refinement method	SHELXL-2014/7 (Sheldrick, 2014)
Data / restraints / parameters	15650 / 0 / 830
Goodness-of-fit on F^2	1.052
Final R indices [I> $2\sigma(I)$]	$R_1 = 0.052, wR_2 = 0.1122$
R indices (all data)	$R_1 = 0.1211, wR_2 = 0.1573$
Largest diff. peak and hole	0.207 and -0.22 e. Å ⁻³

	Μ	
Bond lengths [Å]	N(1)-C(22)	1.421
	C(7)-C(15)	1.387
	C(7)-C(17)	1.483
	C(14)-C(15)	1.399
	C(14)-C(49)	1.484
	C(18)-C(20)	1.385
	C(54)-C(59)	1.462
	C(55)-C(57)	1.373
Bond angles [°]	C(49)-C(14)-C(15)	119.239
	C(49)-C(14)- C(12)	122.823
	C(17)-C(7)-C(15)	119.867
	C(17)-C(7)-C(8)	121.930
Torsion angles [°]	C(12)-C(14)-C(49)-C(57)	151.817
	C(12)-C(14)-C(49)-C(50)	-29.094
	C(15)-C(14)-C(49)-C(57)	-26.555
	C(15)-C(14)-C(49)-C(50)	152.534
	C(18)-C(17)-C(7)-C(15)	-36.087
	C(18)-C(17)-C(7)-C(8)	144.719
	C(28)-C(17)-C(7)-C(15)	142.890
	C(28)-C(17)-C(7)-C(8)	-36.304

Table S2. Selected bond lengths [Å], bond angles [°], and torsion angles [°] of M

Figure S4. Single-crystal X-ray structure of **M**: (a) front view and (b) side view (c) molecular packing styles. Hydrogen atoms are omitted for clarity.

Figure S5. CV curves of **O**, **M**, and **P**. Condition: in CH_2Cl_2 solution containing 0.1 M TBAP as electrolyte, SCE reference electrode. Scan rate of 0.05 Vs⁻¹.

Figure S6. UV-vis absorption (left) and emission (right) spectra of triphenylamine (TPA), 1,2-diphenyl-1Hbezimidazole (IMI) and all dyads in dichloromethane solution.

Figure S7. UV-vis absorption (left) and emission (right) spectra of O, M, and P in the solid state.

Figure S8. Fluorescence lifetimes ($^{\tau_F}$) of (a) **O**, (b) **M**, and (c) **P** at 500 nm (in CH₂Cl₂ at RT). (d) Fluorescence lifetimes ($^{\tau_F}$) comparison of all dyads at 500 nm (in CH₂Cl₂ at RT)

	0		Ν	1	P	
	$\lambda_{abs} (nm)$	λ_{em} (nm)	λ_{abs} (nm)	λ_{em} (nm)	λ_{abs} (nm)	λ_{em} (nm)
Solvents						
Hexane	305	415	315	371	350	404
Cyclohexane	306	418	314	372	351	406
Toluene	308	438	316	391	355	424
Ether	304	439	314	397	349	435
THF	306	461	316	449	353	460
DCM	305	472	314	478	354	479
ACN	303	501	312	538	349	513
МеОН	301	509	309	543	350	516

Table S3. Spectroscopic parameters of O, M, and P in various solvents

Figure S9. UV-vis absorption spectra of O, M, and P in various solvents at room temperature.

Figure S10. Lippert-Mataga plots for dyads O, M, and P.

Compounds	$\Delta \mu$	μ_g	μ_e
0	31.5 D	3.8 D	35.2 D
Μ	62.9 D	4.2 D	67.1 D
Р	51.5 D	3.9 D	55.4 D

Table S4. Dipole moment values of **O**, **M**, and **P** in the ground and excited states

Figure S11. UV/vis/NIR optical absorption spectral change during the electrochemical oxidation from neutral to cation of (a) \mathbf{O} , (b) \mathbf{M} , and (c) \mathbf{P} in CH₃CN with 0.1 M Bu₄NClO₄ at room temperature.

Figure S12. Transient absorption spectra of dyads (a) O, (b) P in CH₂Cl₂. Excitation wavelength is 320 nm. Inset: decay and rise profiles are monitored at selected wavelengths.

DFT/TD-DFT Calculation Details

All the calculations were performed on the platform of the Gaussian 16 package.¹ The ground-state geometry of all dyads has been optimized at the density function theory (DFT) level. Full geometry optimizations in their ground state were performed using the B3LYP functional² and the 6-31G³ basis set for all atoms. No charge and no symmetry constraints were applied during the geometry optimizations. The nature of the stationary points located was further checked by computations of harmonic vibrational frequencies at the same level of theory. As well as, all of the Cartesian coordinates for optimized structure of all dyads are also summarized in Table S5. The Isodensity plots (isodensity contour = 0.05 a.u.) of the selected frontier orbitals (HOMO-3, HOMO-2, HOMO-1, HOMO, LUMO, LUMO+1, LUMO+2, LUMO+3) were visualized by Chem3D Ultra and GaussView 5.0 program. The excitation energies and oscillator strengths for the lowest 100 singlet–singlet transitions at the optimized geometry in the ground state were obtained in TD-DFT calculations using the same basis set and functional as for the ground state. The simulated absorption spectra were obtained by the GaussSum program based on TD-DFT results. To reduce the meaningless features, only 20 singlet–singlet transitions are summarized in Table S6.

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	0.440296	-0.04884	-2.14854	С	-5.58837	3.392858	2.571164
С	-0.04344	-1.19061	-2.71347	С	-0.3819	5.056424	1.183474
С	0.672224	-1.76386	-3.70682	С	0.746102	5.776275	1.292152
С	1.871413	-1.30557	-4.08996	С	1.088243	6.312806	2.469495
С	2.39052	-0.24398	-3.46648	С	0.272757	6.122014	3.513658
С	1.673229	0.368139	-2.51477	С	-0.85234	5.402233	3.37312
С	-1.14071	-1.85873	-2.27021	Н	0.363824	-2.69948	-4.20117
С	-0.27243	0.77075	-1.33044	Н	2.446145	-1.81769	-4.88015
С	-1.5166	-1.82782	-0.97733	Н	3.378831	0.143608	-3.76637
С	-2.61634	-2.44639	-0.52161	Н	2.129827	1.293296	-2.12633
С	-3.44334	-3.18347	-1.29525	Н	-0.8941	-1.32363	-0.21822
С	-3.01173	-3.2654	-2.57393	Н	-2.762	-2.37682	0.571027
С	-1.91482	-2.64545	-3.04181	Н	-3.61049	-3.7779	-3.3472
С	0.284358	1.559527	-0.3909	Н	-1.73138	-2.73895	-4.12539
С	-0.44424	2.345968	0.41911	Н	1.365767	1.514213	-0.17753
С	-1.78534	2.459126	0.345447	Н	0.123876	2.817369	1.235532
С	-2.33621	1.663487	-0.59624	Н	-3.42395	1.651391	-0.78415
С	-1.61326	0.879727	-1.41174	Н	-2.18018	0.347413	-2.19448
Ν	-4.51598	-3.75518	-0.84359	Н	-7.0509	-4.5452	-0.95002
С	-4.9674	-4.83187	-1.40905	Н	-7.834	-6.52604	-1.9406
С	-5.13608	-3.23318	0.1704	Н	-6.31271	-8.05011	-3.10213
С	-6.2732	-5.19323	-1.38931	Н	-3.92778	-7.50843	-3.17715
С	-6.75364	-6.3032	-1.97266	Н	-3.08146	-5.59056	-2.11727
С	-5.93023	-7.13526	-2.62077	Н	-5.97336	-5.05046	0.96202
С	-4.62943	-6.82547	-2.66815	Н	-7.12411	-4.06888	2.761569
С	-4.17827	-5.70637	-2.07896	Н	-6.9839	-1.66542	3.19733
С	-5.89707	-3.95161	1.030908	Н	-5.65788	-0.26574	1.6891
С	-6.54062	-3.42219	2.083971	Н	-4.57185	-1.18236	-0.17736
С	-6.45887	-2.11055	2.336449	Н	-3.23547	5.923758	4.118256
С	-5.72208	-1.3539	1.514902	Н	-5.44957	5.730189	4.912727
С	-5.08691	-1.91192	0.471768	Н	-7.01951	4.133979	3.951144
С	-2.55584	3.210288	1.1785	Н	-6.28992	2.69419	2.087595
Ν	-2.30275	4.135768	2.045076	Н	-0.62968	4.736876	0.157326
С	-3.39882	4.304274	2.697233	Н	1.380594	5.954057	0.407159
С	-4.31941	3.494494	2.157917	Н	2.011009	6.906677	2.573424
Ν	-3.77851	2.867274	1.215346	Н	0.542644	6.54589	4.496217
С	-1.22237	4.814038	2.214995	Н	-1.40884	5.247148	4.307244
С	-3.84109	5.127359	3.667377				
С	-5.10738	5.048199	4.114988				
C	-5.98054	4.177601	3.584679				

Table S5-1. Cartesian coordinates for optimized structure for O

Figure S13-1. Energy levels and isodensity plots (isodensity contour = 0.05 a.u.) for selected occupied and unoccupied molecular orbitals of **O** obtained by DFT calculations.

Figure S14-1. Electronic transition and simulated absorption spectra of **O** in the ground state geometry obtained by TD-DFT calculations.

1			0
Energy (<i>cm</i>)	(nm)	strength	
26907.46	371.64	0.1277	HOMO->LUMO (95%)
28506.86	350.79	0.2137	HOMO->L+1 (94%)
31074.93	321.80	0.0104	HOMO->L+4 (87%)
32055.7	311.96	0.0011	HOMO->L+2 (98%)
32372.68	308.90	0.0014	HOMO->L+3 (90%)
33162.29	301.55	0.1176	HOMO->L+5 (90%)
33580.89	297.79	0.6209	H-1->LUMO (84%)
34678.61	288.36	0.0253	HOMO->L+6 (70%), HOMO->L+8 (17%)
35174.65	284.30	0.0272	H-1->L+1 (85%)
35416.61	282.35	0.0377	H-2->LUMO (68%)
35603.73	280.87	0.0713	HOMO->L+7 (53%), HOMO->L+8 (22%)
36118.31	276.87	0.0029	HOMO->L+6 (19%), HOMO->L+7 (22%),
			HOMO->L+8 (34%), HOMO->L+9 (15%)
36328.82	275.26	0.0803	H-1->L+2 (79%)
36652.25	272.83	0.0625	H-1->L+3 (75%)
36795.82	271.77	0.1082	HOMO->L+7 (12%), HOMO->L+9 (20%),
			HOMO->L+10 (44%)
37814.5	264.45	0.0123	H-3->LUMO (78%)
38425.87	260.24	0.0094	H-2->L+2 (88%)
38569.43	259.27	0.0285	H-2->L+1 (33%), H-2->L+3 (34%),
			HOMO->L+9 (11%)
38650.09	258.73	0.0244	H-2->L+3 (10%), HOMO->L+8 (10%),
			HOMO->L+9 (37%), HOMO->L+10 (21%)
38931.58	256.86	0.006	H-6->LUMO (22%), H-5->LUMO (10%),
			H-1->L+4 (20%), H-1->L+6 (16%)
	26907.46 28506.86 31074.93 32055.7 32372.68 33162.29 33580.89 34678.61 35174.65 35416.61 35603.73 36118.31 36328.82 36652.25 36795.82 37814.5 38425.87 38569.43 38650.09 38931.58	26907.46371.6428506.86350.7931074.93321.8032055.7311.9632372.68308.9033162.29301.5533580.89297.7934678.61288.3635174.65284.3035416.61282.3535603.73280.8736118.31276.8736328.82275.2636652.25272.8336795.82271.7737814.5264.4538425.87260.2438569.43259.2738650.09258.7338931.58256.86	26907.46371.640.127728506.86350.790.213731074.93321.800.010432055.7311.960.001132372.68308.900.001433162.29301.550.117633580.89297.790.620934678.61288.360.025335174.65284.300.027235416.61282.350.037735603.73280.870.071336118.31276.870.002936328.82275.260.080336652.25272.830.062536795.82271.770.108237814.5264.450.012338425.87260.240.009438569.43259.270.028538650.09258.730.024438931.58256.860.006

Table S6-1. TD-DFT calculation: Transition assignment of O

Table S5-2. Cartesian coordinates for optimized structure for M

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	6.165422	-1.73715	-2.42346	С	1.770051	4.420811	1.601981
С	5.848536	-2.18065	-3.6572	С	3.022107	4.458516	1.091866
С	4.754567	-1.75788	-4.30147	С	4.108511	4.800135	1.802761
С	3.928699	-0.87133	-3.73349	С	3.986491	5.141878	3.090936
С	4.15658	-0.3707	-2.5019	С	2.762407	5.14499	3.632538
С	5.283609	-0.8423	-1.91486	С	1.693177	4.804374	2.894721
С	7.280078	-2.16313	-1.76221	Н	6.450168	-2.90259	-4.22692
С	3.318278	0.533341	-1.91733	Н	4.532189	-2.14292	-5.31269
С	7.661737	-1.72137	-0.54527	Н	3.067065	-0.60141	-4.35985
С	8.758636	-2.15326	0.100167	Н	5.505751	-0.4597	-0.91887
С	9.618764	-3.07226	-0.38866	Н	7.110431	-0.94478	0.005391
С	9.236354	-3.50699	-1.60853	Н	8.965138	-1.63422	1.053157
С	8.135635	-3.08412	-2.25326	Н	9.78393	-4.31945	-2.11858
С	3.490121	1.040091	-0.67761	Н	7.974906	-3.58328	-3.22019
С	2.66585	1.939969	-0.11498	Н	4.307568	0.724783	-0.01241
С	1.584248	2.452817	-0.73039	Н	2.879968	2.173992	0.939394
С	1.368638	1.898113	-1.9411	Н	0.501329	2.19012	-2.55899
С	2.198443	1.004649	-2.50659	Н	1.880521	0.688822	-3.51103
Ν	10.67846	-3.48524	0.234865	Н	12.84737	-3.19412	1.740243
С	11.69433	-3.93018	-0.43889	Н	12.90217	-3.18723	4.089127
С	10.72065	-3.45319	1.531477	Н	10.84671	-3.35657	5.405718
С	0.721488	3.351095	-0.18243	Н	8.710347	-3.58862	4.235563
Ν	0.762567	4.108616	0.864639	Н	8.612473	-3.69902	1.891364
С	-0.43158	4.565791	1.005432	Н	12.43437	-5.30779	1.040328
С	-1.16408	4.103943	-0.01645	Н	14.29436	-6.06198	-0.18107
Ν	-0.42084	3.393786	-0.73632	Н	14.72969	-5.26058	-2.45158
С	11.87263	-3.34167	2.236481	Н	13.2166	-3.60537	-3.43031
С	11.93148	-3.30475	3.577479	Н	11.39953	-2.74779	-2.21351
С	10.81092	-3.38406	4.304396	Н	-0.55185	5.980814	2.634077
С	9.645583	-3.49787	3.656832	Н	-2.85286	6.426358	2.35587
С	9.617225	-3.52782	2.314698	Н	-4.13641	5.438017	0.535766
С	12.57524	-4.83486	0.053086	Н	-3.00633	3.948642	-1.07017
С	13.62915	-5.30611	-0.6327	Н	3.207073	4.286935	0.018132
С	13.86681	-4.88245	-1.87944	Н	5.101428	4.829911	1.322496
С	13.02754	-3.98684	-2.41219	Н	4.869478	5.425538	3.686627
С	11.97925	-3.53673	-1.70401	Н	2.641526	5.412158	4.696436
С	-1.05477	5.431072	1.828354	Н	0.749414	4.770098	3.455629
С	-2.3598	5.716555	1.669116				
С	-3.07144	5.182891	0.664021				
C	-2.4608	4.372251	-0.21171				

Figure S13-2. Energy levels and isodensity plots (isodensity contour = 0.05 a.u.) for selected occupied and unoccupied molecular orbitals of **M** obtained by DFT calculations.

Figure S14-2. Electronic transition and simulated absorption spectra of **M** in the ground state geometry obtained by TD-DFT calculations.

Table S6-2	. TD-DFT	calculation:	Transition	assignment	of M

No.	Excitation	Wavelength	Oscillator	Assignment
	Energy (cm^{-1})	(nm)	strength	
1	27214.76	367.45	0.0684	HOMO->LUMO (98%)
2	29534.41	338.59	0.9051	HOMO->L+1 (87%)
3	31085.41	321.69	0.0132	HOMO->L+4 (96%)
4	31789.54	314.57	0.6782	H-1->LUMO (86%)
5	32715.46	305.67	0.2258	HOMO->L+5 (97%)
6	33397.81	299.42	0.0024	HOMO->L+2 (97%)
7	33566.38	297.92	0.0012	HOMO->L+3 (98%)
8	33809.15	295.78	0.0391	H-2->LUMO (92%)
9	34984.3	285.84	0.0025	H-1->L+1 (68%)
10	35439.2	282.17	0.015	HOMO->L+6 (12%), HOMO->L+8 (71%)
11	35657.77	280.44	0.0674	H-1->L+2 (69%), HOMO->L+9 (15%)
12	35723.1	279.93	0.0076	H-1->L+2 (13%), HOMO->L+9 (79%)
13	35907	278.50	0.0081	H-1->L+3 (92%)
14	36533.69	273.72	0.0121	HOMO->L+6 (69%), HOMO->L+8 (12%)
15	37370.09	267.59	0.0226	H-3->LUMO (78%), H-1->L+1 (10%)
16	37461.23	266.94	0	HOMO->L+7 (86%)
17	37943.55	263.55	0.0173	H-7->LUMO (34%), H-1->L+7 (31%)
18	38041.95	262.87	0.0411	H-2->L+2 (78%)
19	38147.6	262.14	0.1102	H-4->LUMO (50%), HOMO->L+10 (17%)
20	38436.35	260.17	0.0127	H-2->L+3 (80%)

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	2.356202	-0.55598	0.264308	С	-6.48512	5.24776	2.58619
С	2.100803	-1.04561	-0.99272	С	-1.23004	4.951569	4.521141
С	0.890828	-0.72764	-1.50585	С	-0.22459	5.352454	5.275597
С	-0.08949	-0.1199	-0.80503	С	-0.46253	5.77569	6.517845
С	0.14407	0.453303	0.39451	С	-1.75423	5.642004	6.905306
С	1.394371	0.223674	0.893304	С	-2.77782	5.136314	6.103014
С	3.002887	-1.79138	-1.7168	Н	3.313663	-0.81929	0.737477
С	-0.81897	1.146588	1.034609	Н	0.623193	-1.18035	-2.47485
С	2.72411	-2.49386	-2.8141	Н	-1.082	-0.09209	-1.30372
С	3.565305	-3.3311	-3.48997	Н	1.680163	0.640132	1.872128
С	4.805063	-3.51407	-3.0308	Н	1.691978	-2.54774	-3.09424
С	5.074998	-2.80193	-1.90342	Н	3.190673	-3.86474	-4.37117
С	4.271045	-1.93552	-1.32274	Н	6.091646	-2.9423	-1.51419
Ν	5.579182	-4.30227	-3.70205	Н	4.773026	-1.41978	-0.49938
С	6.41787	-5.0317	-2.99648	Н	6.010648	-6.64566	-4.99838
С	5.402323	-4.50308	-4.97414	Н	5.659463	-6.9869	-7.26592
С	5.688705	-5.67828	-5.55517	Н	5.060094	-5.1766	-8.87159
С	5.513244	-5.92958	-6.88093	Н	4.564379	-2.93277	-7.83379
С	5.066114	-4.99663	-7.74367	Н	4.651465	-2.59848	-5.58066
С	4.758791	-3.82749	-7.20826	Н	7.880234	-5.18552	-4.58985
С	4.814055	-3.63609	-5.89791	Н	9.475306	-6.32764	-3.33693
С	7.564193	-5.47256	-3.51569	Н	9.017062	-7.06499	-1.12901
С	8.550977	-6.13237	-2.8792	Н	6.919664	-6.29177	0.031363
С	8.320225	-6.41645	-1.61293	Н	5.453515	-5.00585	-1.1365
С	7.217887	-6.05975	-0.993	Н	0.186446	1.424688	2.939461
С	6.289738	-5.31978	-1.69913	Н	-1.27936	2.666382	3.936881
С	-0.67765	1.659886	2.277025	Н	-3.50018	2.806075	0.34394
С	-1.51193	2.501028	2.887964	Н	-2.1782	1.55065	-0.60315
С	-2.53772	3.093745	2.261564	Н	-4.96123	6.125753	5.84743
С	-2.68967	2.539011	1.039113	Н	-7.15341	6.732348	5.39463
С	-1.89382	1.643117	0.411056	Н	-8.14222	6.331804	3.27104
С	-3.3855	3.98659	2.752502	Н	-6.88931	5.061408	1.574333
Ν	-3.44201	4.611261	3.895603	Н	-0.95671	4.827974	3.515029
С	-4.63548	5.076584	3.927631	Н	0.808173	5.431274	4.840572
С	-5.27877	4.811952	2.818789	Н	0.328886	6.059229	7.229959
Ν	-4.48611	4.176459	2.100047	Н	-1.89595	5.714859	8.013469
С	-2.54082	4.859255	4.818357	Н	-3.66699	4.860856	6.653085
С	-5.30214	5.824883	4.839028				
С	-6.54606	6.224119	4.617831				
C	-7.16055	6.017447	3.432078				

Table S5-3. Cartesian coordinates for optimized structure for P

Figure S13-3. Energy levels and isodensity plots (isodensity contour = 0.05 a.u.) for selected occupied and unoccupied molecular orbitals of **P** obtained by DFT calculations.

Figure S14-3. Electronic transition and simulated absorption spectra of **P** in the ground state geometry obtained by TD-DFT calculations.

No.	Excitation	Wavelength	Oscillator	Assignment
	Energy (cm^{-1})	(nm)	strength	
1	25839.58	387.00	0.9732	HOMO->LUMO (96%)
2	30791.83	324.76	1.0022	H-1->LUMO (76%), HOMO->L+1 (16%)
3	30954.75	323.05	0.0124	HOMO->L+4 (96%)
4	31585.48	316.60	0.0013	H-1->LUMO (19%), HOMO->L+1 (71%)
5	32596.9	306.78	0.2006	HOMO->L+5 (96%)
6	33291.34	300.38	0.0006	HOMO->L+2 (83%)
7	33315.54	300.16	0.0289	H-2->LUMO (83%)
8	33585.73	297.75	0.003	HOMO->L+3 (80%)
9	34639.09	288.69	0.0013	HOMO->L+6 (70%), HOMO->L+7 (10%)
10	35627.93	280.68	0.0158	HOMO->L+8 (19%), HOMO->L+9 (12%),
				HOMO->L+10 (57%)
11	35640.83	280.58	0.005	H-1->L+1 (51%), H-1->L+2 (10%), H-1-
				>L+3 (13%)
12	35681.97	280.25	0.021	HOMO->L+6 (10%), HOMO->L+9 (55%)
13	36052.98	277.37	0.0765	H-3->LUMO (36%), H-1->L+2 (46%)
14	36150.58	276.62	0.0785	H-3->LUMO (44%), H-1->L+2 (18%), H-1-
				>L+3 (18%)
15	36879.7	271.15	0.0001	H-1->L+2 (12%), HOMO->L+7 (49%)
16	37424.13	267.21	0.006	H-2->L+1 (11%), H-1->L+1 (21%), H-1-
				>L+3 (49%)
17	37935.48	263.61	0.0286	H-2->L+1 (27%), H-2->L+2 (14%), H-2-
				>L+3 (15%), HOMO->L+8 (26%)
18	38027.43	262.97	0.0145	H-2->L+2 (33%), HOMO->L+8 (33%),
				HOMO->L+10 (10%)
19	38287.95	261.18	0.0007	H-6->LUMO (28%), H-1->L+6 (25%),
				HOMO->L+6 (12%)
20	38509.75	259.67	0.0435	H-2->L+2 (44%), H-2->L+3 (22%)

Table S6-3. TD-DFT calculation: Transition assignment of P

References

- Gaussian 16, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
- 2. a) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785. b) S. H. Vosko, L. Wilk, M. Nusair, *Can. J. Phys.* **1980**, 58, 1200. c) A. D. Becke, *J. Chem. Phys.* **1993**, 98, 5648. d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, *J. Phys. Chem.* **1994**, 98, 11623.
- a) "Gaussian Basis Sets for Molecular Calculations" S.Huzinaga, J.Andzelm, M.Klobukowski, E.Radzio-Andzelm, Y.Sakai, H.Tatewaki Elsevier, Amsterdam, 1984. b) E. R. Davidson, D. Feller, *Chem. Rev.* 1986, *86*, 681.