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CI-NEB electrode potential and surface charges

The electrode potential dependence of the CI-NEB energy profiles were estimated using the

Chan-Nørskov charge-extrapolation scheme1,2. Since each CI-NEB image along the optimized

reaction path corresponds to a different governing electrode potential and surface charge

due to fractional charge transfer, constant electrode potential profiles are derived in practice

by referencing each CI-NEB image to a single chosen reference state (e.g. the 3rd CI-NEB

image) in accordance with Equation (8) in the main text. The electrode potential at this

reference state sets the constant electrode potential for the corrected “grand canonical” energy

profile. Performing this procedure using every single CI-NEB image as a reference state in

turn with each state corresponding to a different electrode potential (and surface charge), a

set of constant potential energy profiles with as many members as there are images in the

CI-NEB calculation is obtained. Shifting each energy profile finally such that the energy of

the initial state is at 0 eV yields the constant electrode potential energy profiles reported in

the main text.

Electrode potentials vs. SHE and surface charges (Hirshfeld) were calculated for each

CI-NEB image of the Volmer (Figure S1) and Heyrovský (Figure S2) reactions. In the case of

the Volmer reaction, the surface charge was calculated by considering all carbon atoms as well

as the nitrogen dopant, while for the Heyrovský reaction also the adsorbed H* intermediate

was included up until the transition state at which the atom is no longer considered to reside

on the surface. For both cases, the results illustrate a monotonously increasing electrode

potential and surface charge, as expected based on the canonical nature of Kohn-Sham DFT.

The steepest increase in both quantities is observed close to the transition state, NEB images

6 and 5, respectively. Furthermore, a closely linear correspondence between the electrode

potential and the surface charge is observed from Figures S1c and S2c, in accordance with

the Gouy-Chapman model of the electrochemical double layer at small potentials. It is

noteworthy that the hybrid PBE0 functional yields electrode potentials that are consistently

positively shifted by roughly 0.3-0.4 eV with respect to PBE. The slope in Figures S1c and
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S2c can be used to estimate the differential capacitance of the NCNT according to

C =
dσ

dU
=

1

Σ

dq

dU
, (S1)

where σ is the surface charge density, q the surface charge, Σ is the model NCNT

surface area (ca. 440Å2) and U is the electrode potential. This yields the approximate value

2± 1 µF cm−2, which increases to 3± 1 µF cm−2 upon hydrogen adsorption. The error margin

corresponds to the standard error of the fit. The capacitance estimates are of the same order

of magnitude as previous experimental estimates for pristine CNTs in dilute electrolyte3.
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Figure S1: a) Electrode potential vs. SHE and b) Hirshfeld surface charges as determined
from the CI-NEB configurations of the Volmer reaction. The change in electrode potential as
a function of the surface charge is illustrated in c). Note that the legend in a) refers to all
panels.
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Figure S2: a) Electrode potential vs. SHE and b) Hirshfeld surface charges as determined
from the CI-NEB configurations of the Heyrovský reaction. The change in electrode potential
as a function of the surface charge is illustrated in c). Note that the legend in a) refers to all
panels.
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Constrained MD simulations – Forces and errors

The time evolution of the Lagrange multiplier (force of constraint) of the Volmer and

Heyrovský initial (IS), transition (TS) and final states (FS) are shown in Figures S3a and

S4a as examples. The first 2 ps of the simulations have been excluded (equilibration) and

the remainder of the trajectories can be seen to exhibit rather constant fluctuations without

long range drift. This is also illustrated by the plotted cumulative averages, which reach a

relatively constant value within a window of 2-3 ps from the start of the production part of

the simulations. As illustrated in the rightmost panels, the obtained forces sample a normal

distribution very closely with mean values . 0.1 eVÅ−1. Ideally, the force at the initial,

transition and final states should be zero.
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Figure S3: a) Time evolution of the force of constraint (Lagrange multiplier) of the initial (IS),
transition (TS) and final states (FS) of the Volmer reaction. The cumulative mean force is
indicated by the red curve. b) Calculation of the statistical inefficiency corresponding to the
force of constraint (Lagrange multiplier) of the initial, transition and final state trajectories
of the Volmer reaction. An asymptotic fit has been added to estimate the limit at which
successive block averages become uncorrelated.

To calculate error margins for the sampled forces of constraint we have applied the block

averaging method4 in conjunction with the statistical inefficiency test5 to appropriately

account for correlation within the data. Briefly, the data Lagrange multiplier vs. MD step
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Figure S4: a) Time evolution of the force of constraint (Lagrange multiplier) of the initial,
transition and final states of the Heyrovský reaction. The cumulative mean force is indicated
by the red curve. b) Calculation of the statistical inefficiency corresponding to the force
of constraint (Lagrange multiplier) of the initial, transition and final state trajectories of
the Heyrovský reaction. An asymptotic fit has been added to estimate the limit at which
successive block averages become uncorrelated.

number is split into blocks of size τb and the block average of each segment is calculate to form

a new dataset. This is done for increasing block sizes (up to a tenth of the full simulation) to

obtain several block averaged datasets. Denoting the bias-corrected sample variances of the

whole simulation and the block averaged ensemble by σ2(λ) and σ2(〈λ〉b) , respectively, the

statistical inefficiency is defined by

s = lim
τb→∞

τbσ
2(〈λ〉b)
σ2(λ)

(S2)

In practice, we fit an asymptotic function of the form f(τb) = a
(
1− e−bτb

)
to the data

and estimate the limit as s ≈ limτb→∞ f(τb) = a. At the limit, successive block averaged

datasets are (approximately) statistically uncorrelated, allowing the estimation of the proper

variance of the mean as

σ2(〈λ〉) =
sσ2(λ)

τ
, (S3)
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where τ is the length of the full simulation. The statistical inefficiency including asymptotic

fits are demonstrated for the Volmer and Heyrovský initial, transition and final states in

Figures S3b and S4b.

The uncertainty in the obtained free energy profiles was calculated using the determined

variances, including the effect of error propagation upon thermodynamic integration. Employing

the cumulative (composite) trapezoidal method, the integral can be written as

∆A(ξ) = −
∫ ξ

ξ0

dξ 〈λ(ξ)〉ξ ≈ −
N∑
k=1

〈λ(ξk−1)〉ξk−1
+ 〈λ(ξk)〉ξk

2
∆ξk

= −∆ξ1
2
〈λ(ξ0)〉ξ0 −

(∆ξ1 + ∆ξ2)

2
〈λ(ξ1)〉ξ1 − . . .

. . .− (∆ξN−1 + ∆ξN)

2
〈λ(ξN−1)〉ξN−1

− ∆ξN
2
〈λ(ξN)〉ξN

(S4)

where ∆ξk = ξk− ξk−1. Since the calculated variances σ2(〈λ(ξ)〉ξ) have been appropriately

decorrelated (zero covariance), the variance of the mean free energy at a given ξ is obtained

using the total differential as

σ2(∆A(ξ)) =
N∑
i=0

(
∂∆A(ξ)

∂ 〈λ(ξi)〉ξi

)2

σ2(〈λ(ξi)〉ξi)

=
(∆ξ1)

2

4
σ2(〈λ(ξ0)〉ξ0) +

(∆ξ1 + ∆ξ2)
2

4
σ2(〈λ(ξ1)〉ξ1) + . . .

. . .+
(∆ξN−1 + ∆ξN)2

4
σ2(〈λ(ξN−1)〉ξN−1

) +
(∆ξN)2

4
σ2(〈λ(ξN)〉ξN ).

(S5)

Finally, the obtained variances of the mean free energy were used to compute error limits

corresponding to the 95 % confidence intervals by taking the square root of the variance to

get the standard error of the mean and subsequently multiplying by 1.96.
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Grotthuss mechanism

To illustrate the initiation of the Grotthuss proton shuttling mechanism in the constrained

MD simulations (unrestrained ensemble), the time evolution of the O–H′ distances of the

Volmer and Heyrovský reactions are plotted in Figure S5 for the transition state and two

immediately following trajectories. Please see the main text for the definition of the atomic

labels.
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Figure S5: a) Time evolution of the O–H′ distances of the a) Volmer and b) Heyrovský
reactions at the transition state (TS) and two following states. Specifically, TS− 1 refers to
the state just before the TS on the reactant side of the reaction (solvated proton) and TS− 2
to the state just before this one. The values of the reaction coordinate constraints are 0.3Å,
0.4Å and 0.6Å for the TS, TS− 1 and TS− 2 states of the Volmer reaction, respectively,
while for the Heyrovský reaction the values are −1.8Å, −1.6Å and −1.4Å, respectively.

For both the Volmer and Heyrovský reactions we observe that the H′ protons bound to

the donating oxygen, but not participating in the Volmer and Heyrovský reactions, are very

stable at the transition state. Indeed, the protons remain strongly bound to the oxygen atom

and only very brief fluctuations are seen where either of the protons transfer closer to the

neighboring O′ atoms (distance increases from ca. 1.0Å to 1.5Å). However, in the following

TS− 1 trajectories the proton hopping between O and O′ intensifies in the simulation of the

Volmer reaction, while a more stationary transfer to the H′ atom is seen for the Heyrovský
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reaction. The O′ atom including the hydrogens stay nevertheless close to the O atom, which

is evidenced by the fact that the transferred H′ is observed to return to the O atom at the end

of the trajectory. Finally, in the TS− 2 trajectories the protons transferring to the NCNT in

the Volmer reaction or forming H2 in the Heyrovský reaction are so far from the surface that

the Grotthuss mechanism becomes energetically facile. This is seen as a fast transfer of either

of the H′ protons to either of the O′ oxygens, followed by successive proton transfers and water

diffusion. This is observed in the upper panels of Figure S5 as a gradual increase in the O-H′

distance from 1.0Å to more than 5.0Å during the course of the simulations. Simultaneously,

the intermediate H7O3
+ proton complexes identified at the TS and TS− 1 states decay and

the excess proton, now farther from the surface, is seen to adopt an Eigen-like configuration.

Constrained MD electrode potential and surface charges

The electrode potentials vs. SHE and the Hirshfeld surface charges were computed every

100 fs for each constrained MD trajectory and are illustrated in Figures S6 and S7. Strong

fluctuations in the orientation of interfacial water molecules are observed to induce substantial

fluctuations in the electrode potential on the order of 0.5-1.0 V, as has been previously

reported6. Although a weak positive linear trend in the electrode potential as a function

of the reaction coordinate appears to exist, the fluctuating surface dipole results in slow

equilibration of the electrode potential, preventing the use of the charge-extrapolation

scheme1,2 employed for the static CI-NEB simulations. Indeed, in the case of the dynamic

simulations, the electrostatic contribution to the energy change along a reaction path is not

purely capacitive, but also dependent on changes in the interfacial dipole. Of course, in

a sufficiently long simulation the electrode potential would equilibrate properly and if the

simulation would further be of grand canonical nature (constant electrode potential, electrons

exchanged with a fictitious potentiostat) the potential would be expected to remain constant

across the whole reaction path. Consequently, one would also expect small long-range solvent
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reorganization, with the exception of the water molecules closest to the reactive species.

While such a simulation would correspond to a truly realistic electrochemical system, the

practical, efficient implementation of grand canonical DFT is highly non-trivial and beyond

the scope of the present work.
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−0.8

−0.7

−0.6

−0.5

−0.4

P
ot

en
ti

al
vs

.
S

H
E

(V
)

a)

−101
Reaction coordinate (Å)
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Figure S6: a) Electrode potential vs. SHE and b) Hirshfeld surface charges as determined
from constrained MD simulations of the Volmer reaction. The change in electrode potential
as a function of the surface charge is illustrated in c). The error bars indicate the standard
errors of the potential and surface charge, respectively.
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Figure S7: a) Electrode potential vs. SHE and b) Hirshfeld surface charges as determined from
constrained MD simulations of the Heyrovský reaction. The change in electrode potential
as a function of the surface charge is illustrated in c). The error bars indicate the standard
errors of the potential and surface charge, respectively.

The change in the averaged surface charge along the reaction paths is, on the other hand,

well equilibrated and exhibits very similar behavior as in the CI-NEB calculations. Plotting

the electrode potential vs. the surface charge in Figures S6c and S7c allows again for an

estimation of the differential capacitance. The obtained estimate is 4± 2 µF cm−2 which

increases to 7± 2 µF cm−2 upon hydrogen adsorption. The error margin corresponds to the

standard error of the fit. Although the errors are larger than for the static calculations due
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to potential fluctuations, the results are qualitatively similar and agree again roughly with

the previous experimental estimate for pristine CNTs3 (< 10 µF cm−2 in a dilute electrolyte).
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