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Relation between the transverse and longitudinal electric fields in thin film OFETs 
satisfying the capacity relation. 
In this section we derive the relation between the transversal and longitudinal electric field, 
which must be fulfilled so that the capacity relation (Eq. 3 of the main text) can be satisfied.  

The mutual relation of the transverse and longitudinal electric fields can be estimated 
from the current conservation law in the longitudinal (x-) direction.  

.                                                                      (S1)                                                                                                              𝐽𝑥 = 𝑤𝜇(𝑉(𝑥,0),𝐸𝑥(𝑥,0))𝜎(𝑥)𝐸𝑥(𝑥,0) = 𝑐𝑜𝑛𝑠𝑡

In (S1) we assumed that the mobility  is a function of the potential  𝜇(𝑉(𝑥,0),𝐸𝑥(𝑥,0)) 𝑉(𝑥,0)

and the longitudinal electric field  in the thin film OFET model. The dependence on 𝐸𝑥(𝑥,0)

 includes both the dependence on the transversal electric field across the sample as 𝑉(𝑥,0)

well as on the accumulated surface charge density   (cf. Eq. 3 of the main text). Next, we 𝜎(𝑥)

assume the current density is equal across the total width  of the sample in the y-direction. 𝑤
Inserting Eq. (3) of the main text to (S1) and taking its derivative along x we find

.                                            (S2)

∂
∂𝑥

𝐽𝑥 = 𝑤𝐶
∂

∂𝑥(𝜇(𝑉(𝑥,0),𝐸𝑥(𝑥,0))(𝑉(𝑥,0) ‒ 𝑉𝐺)𝐸𝑥(𝑥,0)) ≡ 0

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2020

mailto:rais@imc.cas.cz


Then, introducing notations

                                                                                                                             (S3)𝑉𝑥𝐺 ≡ 𝑉(𝑥,0) ‒ 𝑉𝐺

.                                                                                                                                     (S4)𝐸𝑥 ≡ 𝐸𝑥(𝑥,0)

Eq. (S2) provides

                                                                     (S5)
‒ ( ∂𝜇

∂𝑉𝑥𝐺
𝑉𝑥𝐺 + 𝜇)𝐸𝑥𝐸𝑥 + ( ∂𝜇

∂𝐸𝑥
𝐸𝑥 + 𝜇)𝑉𝑥𝐺

∂𝐸𝑥

∂𝑥
= 0

Consequently,

.                                                                                              
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(S6)

In the 1d thin film OFET model  so that the Poisson equation provides

∂𝐸𝑦

∂𝑦
= 0,  

∂𝐸𝑥
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≪

∂𝐸𝑧

∂𝑧
 

.                                                                                                   
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𝜌(𝑥,0)
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(S7)  

Taking for the right hand side of Eq. (S7) the macroscopic approximation

   (Ref. S1) we get                                 
𝜌(𝑥,0) =

e
2𝐾𝑇
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.                                                                                                            
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(S8) 



Utilizing next Eq. (2) of the main text ( ) for the transversal component 
𝐸𝑧(𝑥,0) =‒  

𝜀𝑖𝑛𝑠

𝜀𝑠

(𝑉𝑥𝐺)

𝑑

of the electric field at the bottom we finally arrive at the condition 

.                                                                                                                            
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(S9)

Eq. (S9) provides the necessary condition between the longitudinal and transversal electric 
fields which must be fulfilled for validity of the capacity relation in Eq. 3 of the main text. 
Assuming that the logarithmic dependence of mobility on applied voltages is of the order of 

unity we come to the relation  mentioned in the main text. 

𝐸𝑥
2

𝐸𝑧
2

≪
e𝑉𝑥𝐺

2𝐾𝑇

The principle of the numerical self-consistent solution of the Gaussian law and current 
transport within the “simulation box”
In this section we describe the numerical details of the self-consistent solution of the 
Gaussian law and the current transport inside the “simulation” box.  

The “simulation box” consists of a finite number  of chains numerated by the index 𝑛𝑥 = 25

k, while respective chains consist of  monomer units numerated by the index i. 𝑛𝑝 = 20

Therefore, the macroscopic variables, which enter the Gaussian law , must 
∇ ⋅ �⃑� =‒ ∆𝑉 =  

𝜌
𝜖𝑆

be calculated on the discrete state space of points . The transcription of the Gaussian (𝑘,𝑖)
law to the discrete variables inside the box is given by Eq. 10 of the main text. For the 
boundary conditions of the thin film OFET (Eqs. 1-3 of the main text) we find the following:  
Eq. (1) takes the form

,                                                                                                                (S10)𝑉(𝑘, 𝑛𝑝) = 𝑉(𝑘, 𝑛𝑝 ‒ 1)

for all chains. From Eq. 2 of the main text we get also the condition for the potential  𝑉(𝑘, 1)

at the bottom of the chain expressed via the potential  at the interface between the 𝑉𝑥(𝑘)

sample and insulator of the k-th chain.

.                                                                                    (S11)
𝑉(𝑘, 1) = (1 ‒

𝜀𝑖𝑛𝑠

𝜀𝑠

𝑎𝑧

𝑑 )𝑉𝑥(𝑘) +
𝜀𝑖𝑛𝑠

𝜀𝑠

𝑎𝑧

𝑑
𝑉𝐺



In Eq. (S11) and below  are the lengths of the elementary unit  in respective 𝑎𝑥,𝑎𝑦,𝑎𝑧 (𝑘,𝑖)

directions. The interface potential  can be, in turn, obtained from the capacity relation 𝑉𝑥(𝑘)

(Eq. (3) of the main text) through the total amount of the macroscopic charge  per k-𝑒𝑛𝐼(𝑘)

th chain (cf. Eq. 6 of the main text) as follows

 .                                                                                                                    
𝑉𝑥(𝑘) = 𝑉𝐺 +

𝑒𝑛𝐼(𝑘)𝑑

𝑎𝑥.𝑎𝑦𝜀𝑖𝑛𝑠

(S12) 

For setting the boundary conditions for the outer chains, i.e., for  and  with the  𝑘 = 𝑛𝑥 𝑘 = 1

externally controlled parameters  and  (“source” and “drain” potentials)  we find𝑉𝑆 𝑉𝐷

‒
1

𝑎2
𝑥

{𝑉𝑆 ‒ 2𝑉(𝑛𝑥,𝑖) + 𝑉(𝑛𝑥 ‒ 1,𝑖)} ‒
1

𝑎2
𝑧

{𝑉(𝑛𝑥,𝑖 ‒ 1) ‒ 2𝑉(𝑛𝑥,𝑖) + 𝑉(𝑛𝑥,𝑖 + 1)} =
𝜌(𝑛𝑥,𝑖)

𝜀𝑠  
  

(S13)

(S14)
‒

1

𝑎2
𝑥
{𝑉(2,𝑖) ‒ 2𝑉(1,𝑖) + 𝑉𝐷} ‒

1

𝑎2
𝑧

{𝑉(1,𝑖 ‒ 1) ‒ 2𝑉(1,𝑖) + 𝑉(1,𝑖 + 1)} =
𝜌(1,𝑖)

𝜀𝑠  

Eqs. (13-14) say that in performing the “second discrete derivatives” in the Gaussian law 

 on the boundary chains we should extend the potential beyond the boundary 
‒ ∆𝑉 =

𝜌
𝜀𝑠

chains. For this extended regions we set the potentials  and . This approach 𝑉𝑆 𝑉𝐷

corresponds to the far field approximation, where the simulation box (micro cavity) is 

embedded into the potential slope  of the external electric field. Depending 𝑉𝑆𝐷 = 𝑉𝑆 ‒ 𝑉𝐷

on the particular coupling of the conducting sample to the “real” source and drain contacts, 

the calibrating of the potential  and  for the “outer” chains can be in principle varied. 𝑉𝑆 𝑉𝐷

For the cases of the “bottom-bottom” or “top-top” contacts, they can be set and fixed just at 

the bottom or top of the “outer” chains. Alternatively, potentials  and  could be 𝑉𝑆 𝑉𝐷

identified with mean values  and  of the potentials of the outer 𝑉𝑆 ≡ 〈𝑉(𝑛𝑥)〉 𝑉𝐷 ≡ 〈𝑉(1)〉

chains given as



 .                                                                                                                        

𝑉(𝑘) =

∑
𝑖

𝑉(𝑘,𝑖)𝑛(𝑘,𝑖)

∑
𝑖

𝑛(𝑘,𝑖)

(S15)

Potentials (S15) control then the hopping kinetics between chains with the current

 (see Eq.S1). 
𝐽𝑥 =‒ 𝑤𝜇(𝑘)

𝑒𝑛𝐼(𝑘)

𝑎𝑥.𝑎𝑦
.
(𝑉(𝑘 + 1) ‒ 𝑉(𝑘)

𝑎𝑥
 →𝑤𝜇(𝑉(𝑥),𝐸𝑥(𝑥,0))𝜎(𝑥)𝐸𝑥(𝑥,0) 

However, for the “Ohmic” limit ( ) the self-consistent solution of the |𝑉𝑆 ‒ 𝑉𝐷| ≪ |𝑉𝑆 ‒ 𝑉𝐺|
density –potential distribution is just little sensitive to such variances in the boundary 
condition definitions . 

The eqs. (S10-14) and Eqs. (6, 10) (main text) represent the system of linear algebraic 
equations between algebraic vectors  and  in the form[𝜌] [𝑉]

,                                                                                                (S16)[𝜌] = [𝑀][𝑉] + [𝑐𝑜𝑛𝑠𝑡(𝑉𝑆,𝑉𝐷)]

where the vector  is given by the applied voltages  and .                                        [𝑐𝑜𝑛𝑠𝑡(𝑉𝑆,𝑉𝐷)] 𝑉𝑆 𝑉𝐷

The iterative algorithm in the numerical calculation is:
(1) Give an initial vector .[𝜌]

(2) Obtain a “solution” vector  from Eqs. (S10-14) and Eqs. (6, 10) (main text). [𝑉]

(3) Obtain a new vector  from Eqs. 4-6 (main text).[𝜌']

(4) Put the new vector  to Eq. (S16), then obtain a new vector . [𝜌'] [𝑉']

(5) If  we obtain the self-consistent results, otherwise, let  and put it back [𝑉] = [𝑉'] [𝜌'] = [𝜌]

to the procedure (2).
(6) Eventually, the final  and  are calculated by proceeding the inverse 𝑉(𝑘,𝑖) 𝜌(𝑘,𝑖)

transformation from the algebraic vector space to the two-dimensional   space.(𝑘,𝑖)
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