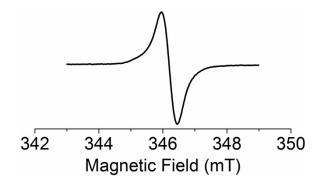
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Two-dimensional ⁶⁷Zn HYSCORE spectroscopy reveals that a Zn-Bacteriochlorophyll a_{P}' dimer is the primary donor (P_{840}) in the Type-1 reaction centers of Chloracidobacterium thermophilum

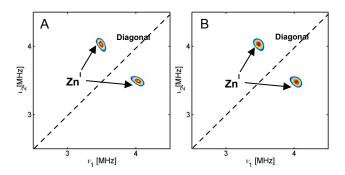
Philip Charles, a.‡ Vidmantas Kalendra, a.‡ Zhihui He, b.† Mohammad Hassan Khatami, d.† John H. Golbeck, b.c Art van der Est, d.* K. V. Lakshmia,* and Donald A. Bryantb,*

^aDepartments of Chemistry and Physics and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180

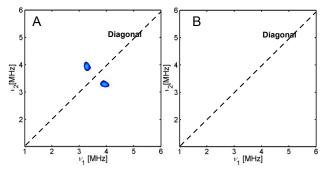
^bDepartment of Biochemistry and Molecular Biology and ^cDepartment of Chemistry, The Pennsylvania State University, State College, PA 16802

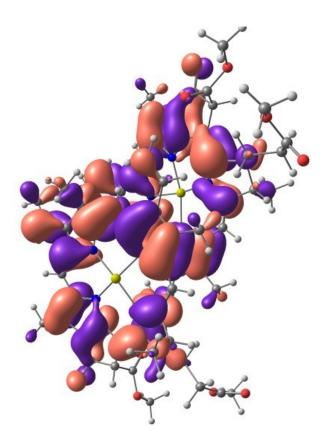

^dDepartment of Chemistry, Brock University, St. Catharines, ON, Canada, L2S 3A1

SUPPLEMENTARY INFORMATION


Table of contents:

1- Continuous-wave and pulsed EPR spectra of Zn²⁺-protoporphyrin IX and C. thermophilum membranes 2 2- Electron charge density distribution in the P₈₀₀⁺ and Zn²⁺-protoporphyrin IX cation 3 3- Experimental and calculated hyperfine and quadrupolar parameters of the Zn²⁺protoporphyrin IX and dimeric Zn^{2+} -BChl g_F cation


4


Figure 1S. Continuous-wave EPR spectrum of the Zn^{2+} -protoporphyrin IX cation at 50 K. The spectrum displays a signal at g=2.003. The cationic species was generated by cryogenic white light illumination of a 6 mM Zn^{2+} -protoporphyrin IX using ACN as a solvent.

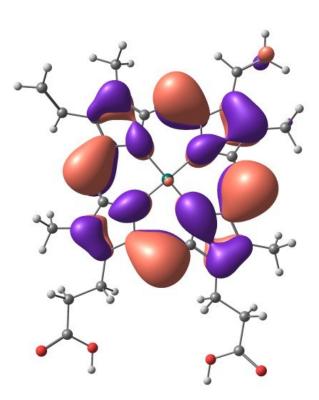

Figure 2S. (A) Experimental and **(B)** simulated 2D ⁶⁷Zn HYSCORE spectrum of the Zn²⁺-protoporphyrin IX cation at 5 K. The spectrum displays a pair of cross-peaks that are symmetric about the main diagonal that arise from the magnetic interaction of ⁶⁷Zn (nuclear spin, I = 5/2) with the unpaired electron spin (S = $\frac{1}{2}$) of the Zn²⁺-protoporphyrin IX cation.

Figure 3S. Comparison of the experimental 2D ⁶⁷Zn HYSCORE spectrum of **(A)** ⁶⁷Zn-labelled and **(B)** unlabelled *C. thermophilum* membranes containing RCs. Both of the plots are normalized by the same number of scans on samples with similar concentrations. The crosspeaks from the hyperfine interactions with the ⁶⁷Zn atom(s) that are observed in part **(A)** are a result of the high levels of isotopic enrichment of ⁶⁷Zn in the ⁶⁷Zn-labelled *C. thermophilum* membranes containing RCs.

Figure 4S. Electron charge density distribution in the singly occupied molecular orbital of the primary donor cation, P_{800}^+ , of the heliobacterial RC that is comprised of a BChl g_F homodimer. The computational model is derived from the recent high-resolution X-ray crystal structure of the heliobacterial RC.³

Table 1S. Experimental 67 Zn hyperfine (A) and quadrupolar (K) couplings for the Zn²⁺-protoporphyrin IX cation that were obtained from experimental 2D HYSCORE measurements.

Nucleus	A _x (MHz)	A _y (MHz)	A _z (MHz)	A iso (MHz)	K (MHz)	η
Zn	0.77	0.84	0.88	0.83	0.80	0.23
	± 0.05	± 0.03	± 0.03	± 0.04	± 0.03	± 0.10

 $\begin{tabular}{ll} \textbf{Table 2S}. 67Zn hyperfine (A) and quadrupolar (K) couplings for the Zn^{2+}-protoporphyrin cation that are obtained from DFT calculations. \end{tabular}$

Nucleus	A _x (MHz)	A _y (MHz)	A _z (MHz)	A _{iso} (MHz)	K (MHz)	η
Zn I	0.77	0.84	0.88	0.83	1.28	0.06

Table 3S. $^{67}{\rm Zn}$ hyperfine (A) and quadrupolar (K) parameters of the oxidized dimeric Zn²+-BChl g_F 'cation that are obtained from DFT calculations.

Nucleus	A _x (MHz)	A _y (MHz)	A _z (MHz)	A _{iso} (MHz)	K (MHz)	η
Zn	0.52	0.64	0.71	0.62	1.35	0.14
Zn II	0.49	0.61	0.68	0.59	1.35	0.14