Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Cite this: DOI: 10.1039/xxxxxxxxx

SUPPLEMENTARY INFORMATION

Vibrational dynamics in lead halide perovskites investigated by Raman spectroscopy †

Josefa Ibaceta-Jaña ^{*a*}, Ruslan Muydinov^{*a*} *,Pamela Rosado^{*b*}, Hossein Mirhosseini^{*c*}, Manjusha Chugh^{*c*}, Olga Nazarenko^{*d*}, Dmitry Dirin^{*d*},Dirk Heinrich^{*b*}, Markus R. Wagner^{*b*}, Bernd Szyszka^{*a*}, Maksym Kovalenko^{*d*} and Axel Hoffmann^{*b*}.

^{*a*} Technology for thin-film devices, Technical University Berlin, Einsteinufer 25,10587 Berlin, Germany.

^b Institute of Solid State Physics, Technical University Berlin, Hardenbergstr.36, 10623 Berlin, Germany.

 $^{^{\}rm c}$ University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany.

^d Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland

^{*} E-mail:ruslan.muydinov@tu-berlin.de

Fig. 1 DFT spectrum of $MAPbI_3$ in a) complete range 0-3500 cm^{-1} and b) low frequency region 0-300 cm^{-1} . The difference compared to the experimental spectrum is caused by different space groups: to simplify theoretical calculations, cubic $Pm\bar{3}m$ space group was taken whereas in fact $MAPbI_3$ has tetragonal I4/mcm symmetry at RT.

Fig. 2 Sublattice modes of the zone I: a) twist and b) distortion of octahedra.

Fig. 3 Raman spectra of (a) $MAPbI_3$ and (b) $CsPbBr_3$ measured at RT with an excitation by laser with $\lambda = 633$ nm.

Fig. 4 Structural formulas of the molecular ions: a) methylammonium, b) formamidinium??.

Table 1	Relevant ionic radii????	

Material	Ionic Radius (Å)
FA^+	2.53
Cs^+	1.81
Pb^{+2}	1.19
I^-	2.20
Br^{-}	1.96

Fig. 5 Powder XRD patterns of as-prepared $FAPbI_3$ -based perovskites: (a) wide range and (b) selected 2 Θ area around (100) reflection in a cubic $Pm\overline{3}m$ system. Lattice constants were calculated on the basis of Rietveld refinement over the whole measured 2 Θ range.

Table 2 Relevant Goldschmidt tolerance factors (GTFs)??

Material	GTF
FAPbI ₃	0.987
$Cs_{0.1}FA_{0.9}PbI_3$	0.972
$Cs_{0.1}FA_{0.9}PbI_{2.6}Br_{0.4}$	0.974
FAPbBr ₃	1.008
CsPbI ₃	0.836
CsPbBr ₃	0.974

Fig. 6 PL signals (spline smoothed curve) for $Cs_{0.1}FA_{0.9}PbI_3$ and for $Cs_{0.1}FA_{0.9}PbI_{2.6}Br_{0.4}$ measured with an excitation source of 633 nm