## **Electronic Supplementary Information**

## Global and Target Analysis of Relaxation Processes of Collapsed State of P3HT Polymer Nanoparticles

Arnab Ghosh, Srijon Ghosh, Goutam Ghosh, Bikash Jana and Amitava Patra\*

School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India

\*Corresponding author's E-mail: msap@iacs.res.in, Phone: (91)-33-2473-4971, Fax: (91)-33-2473-2805

## Calculation of concentration of Au NP

We have used 500 µl of 10 mM HAuCl<sub>4</sub>,3H<sub>2</sub>O solution for preparation of Au NPs which corresponds to 1.97 mg HAuCl<sub>4</sub>,3H<sub>2</sub>O i.e. 0.985 mg Au. We have found that diameter of each Au NP was ≈5 nm which means the volume of each Au NP is  $4/3 \times \Pi \times (5/2 \times 10^{-7})^3$  cm<sup>-3</sup>. Now, the total volume of the prepared Au NP solution was 20 mL. So, no. of Au NP in 20 mL solution will be, {mass of Au present/ (volume of each particle × density of Au)}. Since the density of Au is 19.32 gcm<sup>-3</sup>, total no of Au NP in 20 mL solution is {0.985 × 10<sup>-3</sup>/ ( $4/3 \times \Pi \times (5/2 \times 10^{-7})^3 \times 19.32$ ) which is equal to 7.8 × 10<sup>14</sup>. So, in 1000 mL there is (7.8 × 10<sup>14</sup> × 1000/20) = 3.89 × 10<sup>16</sup> no. of Au NP. Now, 1 mole corresponds to 6.023 × 10<sup>23</sup> no. of particles. Therefore, in 1000 mL stock solution there is (3.89 × 10<sup>16</sup>/6.023 × 10<sup>23</sup>) = 64 × 10<sup>-9</sup> moles Au NP. So, the molar concentration of Au NP stock solution is  $64 \times 10^{-9}$  M i.e 64 nM. Now, we have added 75, 125 and 250 µl of this stock solution for preparing the composites and the final volume of each set was 3 mL which means final concentration of Au NP in the composite systems are 1.5 nM, 2.5 nM and 5 nM.



**Fig. S1:** TEM images of (A) P3HT PNP (inset show image of prepared Au NP) and (B) P3HT PNP/Au NP heterostructures



**Fig. S2:** UV-Vis absorption spectra and PL spectra respectively of P3HT in THF (a,c) and P3HT PNP (b,d)



**Fig. S3:** (A) UV-Vis spectra of (a) P3HT PNP, (b) P3HT PNP/Au NP heterostructure and (c) 5 nM Au NP; (B) PL spectra of P3HT PNP and P3HT PNP/Au NP heterostructure with increasing concentration of Au NP from 0 to 5 nM; (C) TCSPC and (D) Fluorescence Upconversion decay curves of (a) P3HT PNP and (b) P3HT PNP/Au NP heterostructure

Time-correlated single photon counting (TCSPC) instrumentation:

The data was analyzed by following equation:

$$P(t) = b + \sum_{i}^{n} \alpha_{i} \exp(-\frac{t}{\tau_{i}})$$

Here, n is the number of emissive species, b is the baseline correction ("DC" offset), and  $\alpha_i$  and  $\tau_i$  are the pre-exponential factor and the excited-state fluorescence decay time associated with the *i*<sup>th</sup> component. The average decay time,  $\langle \tau \rangle$ , was calculated from the following equation.

$$< au>=\sum_{i=1}^neta_i au_i$$

Where  $\beta_i = \alpha_i / \sum \alpha_i$  and it is the contribution of the decay component.  $\alpha_i$  and  $\tau_i$  are the preexponential factors and excited-state fluorescence lifetimes associated with the *i*<sup>th</sup> component, respectively. This value should be called an amplitude-weighted lifetime.

**Table S1:** TCSPC decay fitting parameters of P3HT PNP and P3HT PNP/Au NPheterostructure

| Sample          | $\tau_1(a_1)(ns)$ | $\tau_2(a_2)(ns)$ | τ <sub>3</sub> (a <sub>3</sub> ) (ns) | τ <sub>avg.</sub> (ns) |
|-----------------|-------------------|-------------------|---------------------------------------|------------------------|
| P3HT PNP        | 0.335 (0.93)      | 1.1 (0.07)        | -                                     | 0.388                  |
| P3HT/Au NP      | 0.23 (0.83)       | 0.597 (0.15)      | 1.2 (0.02)                            | 0.304                  |
| Heterostructure |                   |                   |                                       |                        |

**Table S2:** Fluorescence upconversion decay fitting parameters of P3HT PNP and P3HTPNP/Au NP heterostructure

| Sample                     | τ <sub>1</sub> (a <sub>1</sub> ) ps | τ <sub>2</sub> (a <sub>2</sub> ) ps |
|----------------------------|-------------------------------------|-------------------------------------|
| P3HT PNP                   | 15 (0.31)                           | 380 (0.69)                          |
| P3HT/Au NP Heterostructure | 8 (0.73)                            | 275 (0.27)                          |

**Table S3:** Fitting parameters of bleach recovery kinetics of P3HT PNP and P3HT PNP/AuNP heterostructure obtained from TAS

| Sample          | $\tau_1^{g}(a_1)$ | $\tau_1^r(a_2)$ | $\tau_2^r(a_3)$ | $\tau_3^r(a_3)$ | $\tau_4^r(a_4)$ |
|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|
|                 | (fs)              | (ps)            | (ps)            | (ps)            | (ps)            |
| P3HT in THF     | <100              | 2.4             | 490             |                 | >8000           |
|                 | (100%)            | (48%)           | (37%)           |                 | (15%)           |
| P3HT in PNP     | <100              | 0.554           | 4.73            | 445             | >8000           |
|                 | (100%)            | (56%)           | (20%)           | (14%)           | (10%)           |
| P3HT/Au NP      | <100              | 0.2             | 3.2             | 295             | >8000           |
| Heterostructure | (100%)            | (70%)           | (12%)           | (10%)           | (8%)            |



**Fig. S4:** Obtained evolution-associated difference spectra (EADS) of the corresponding states of P3HT in THF after exciting at 400 nm.



**Fig. S5:** Obtained evolution-associated difference spectra (EADS) of the corresponding states of P3HT PNP after exciting at 400 nm.



**Fig. S6:** Obtained evolution-associated difference spectra (EADS) of the corresponding states of P3HT/Au heterostructure after exciting at 400 nm.



Fig. S7: TAS signal for 5 nM Au NP excited at 400 nm.

## Estimated rate constants from target analysis of P3HT/Au heterostructure

The rate constant obtained for conversion of SADS 1 to SADS 2 is 6.849 ps<sup>-1</sup>. This rate constant is summation of two processes: (process a) conversion from  $S_1^{Hot}$  state to the  $S_1$  state [corresponding rate constant  $k_a$ ] and (process c) the electron transfer process from the  $S_1^{Hot}$  state to Au NPs [corresponding rate constant  $k_c$ ]. The value of  $K_a$  is 2.898 ps<sup>-1</sup> (obtained from Fig. 4A) and the rate constant ( $k_c$ ) for electron transfer from  $S_1^{Hot}$  state of PNPs to Au NPs is 3.951 ps<sup>-1</sup> and the timescale associated with the process ( $\tau_c = k_c^{-1}$ ) is 253 fs. The SADS 2 decays to ground state and SADS 3 simultaneously. The decay time of SADS 2 to ground state is 9.6 ps and the rate constant for conversion of SADS 2 to SADS 3 is 0.3125 ps<sup>-1</sup>. This rate constant is also summation of two processes: (process b) population conversion from  $S_1$  of PNP to  $CL_S$  state [corresponding rate constant  $k_b$ ] and (process d) the electron transfer from  $CL_S$  state of the PNPs to the Au NPs [corresponding rate constant  $k_d$ ]. The value of the rate constant  $k_d$  is found to be 0.0265 ps<sup>-1</sup> and therefore the timescale associated to the electron transfer from  $CL_S$  state of the PNPs to the Au NPs is 37.7 ps<sup>-1</sup>.