Partitioning of interaction-induced nonlinear optical properties of molecular complexes. II. Halogen-bonded systems

SUPPORTING INFORMATION

Miroslav Medved', *, a, b Alex Iglesias, c Heribert Reis, d Robert W. Góra, e Josep M. Luis, *, c Robert Zaleśny*, e

^a Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, SK-97400 Banská Bystrica, Slovak Republic.

^b Regional Centre of Advanced Technologies and Materials, Faculty of Science,

Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic

^c Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17071 Girona, Catalonia, Spain

^d Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), Vassileos Constantinou Ave 48th, 116 35 Athens, Greece

^e Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

*E-mail: miroslav.medved@umb.sk(M.M.), josepm.luis@udg.edu(J.M.L.), robert.zalesny@pwr.edu.pl(R.Z.)

Table S1: Electronic (hyper)polarizabilities of HCN...II complex computed using the MP2 method. All values are given in au.

basis set	α_{zz}	β_{zzz}	Yzzzz
aug-cc-pVTZ-PP	143.89	-450.6	71750
aug-cc-pVQZ-PP	143.75	-471.4	73849

All	
et.	
sis s	
bag	
-PP	
ZLV	
c-p	
o-gu	
le al	
nd th	
ls ar	
thoc	
me	
AP2	
N-S	
d SC	
2 and	
MP2	
the	
ing	
d us	
nine	
tern	
s de	
artie	
rope	
ic p	
lecti	
ed e	
duce	
n-in	
ctio	
itera	
of ir	
son (au.
paris	n in i
jomj	iver
2: C	ure g
le S	les ¿
Tab	valı

yel	SCS-MP2	12866	31490	39725
∇	MP2	14463	35421	45019
3nr	SCS-MP2	-3309.7	-5370.8	-4679.0
Þ	MP2	-3652.8	-6222.6	-5538.0
$\beta^{ m el}$	SCS-MP2	-107.6	-348.8	-460.6
\checkmark	MP2	-73.3	-333.3	-476.1
Δα ^{nr}	SCS-MP2	29.36	34.64	29.30
7	MP2	33.92	39.07	32.43
$\Delta \alpha^{\rm el}$	SCS-MP2	15.28	21.17	21.20
7	MP2	17.04	23.45	23.57
		HCN… BrF	$HCN \cdots IBr$	HCN… II

9).673 -0	-4.096 0.673 -0	13.062 -4.096 0.673 -0
9	0.115 -0	-5.209 -0.115 -0	15.380 -5.209 -0.115 -0
÷	2.358 -1.	12.829 -2.358 -1.	30.438 -12.829 -2.358 -1.
ġ.	0.459 -0.	-0.751 0.459 -0.	3.430 -0.751 0.459 -0.
ò	.0- 0.776	-6.782 -0.776 -0.	18.657 -6.782 -0.776 -0.
`	1.740 -0.3	-8.381 -1.740 -0.3	21.658 -8.381 -1.740 -0.3
	4.445 -1.	15.484 -4.445 -1.	34.649 -15.484 -4.445 -1.
õ	0.039 -0.2	-1.268 -0.039 -0.2	5.010 -1.268 -0.039 -0.0
Õ.	0.153 -0.	-4.675 0.153 -0.	14.138 -4.675 0.153 -0.

٩II	
es(a	
. <u>ig</u>	
ene	
ng	
ndi	
id (
Ĕ	
SL	
5	
and	
Ъ.	
leo	
of th	
el c	
lev	
ΡР	
Ŋ	
5	
ng-	
2/a)	
MP	
he	
at t	
eq	
n	
erfc	
d u	
itio	
osi	
luc	
lec	
SV C	
Jerg	
n ei	
tio	
erac	
inté	ol.
lar	l/m
ecu	kca
nol	.u
teri	ven
In	20
S3:	s arc
ble	lues
Tal	val

^(a)The values are taken from ref. [J. Chem. Theory Comput. 2013, 9, 1918–1931] and correspond to the binding energies. The geometries were calculated at the CCSD(T)/aug-cc-pVQZ level and the energies at CCSD(T)/CBS.

	$d(A-X)_A$	$d(A-X)_{AB}$	$\Delta d(A-X)$	$d(\mathrm{X}{\cdots}\mathrm{B})_{\mathrm{AB}}$	$\nu(A-X)_A$	$\nu(A-X)_{AB}$	$\Delta \nu(A-X)$	$\nu(X \cdots B)_{AB}$	qx
HCN…BrBr	2.271	2.287	0.016	2.698	343.5	329.5	-14.0	111.4	0.00
HCN…BrCl	2.132	2.153	0.021	2.631	463.9	441.4	-22.5	121.8	0.12
HCN…BrF	1.754	1.784	0.030	2.386	697.6	645.4	-52.2	162.5	0.49
HCN…BrH	1.400	1.403	0.003	3.105	2768.9	2750.0	-18.9	79.7	-0.18
HCN…IBr	2.462	2.485	0.023	2.734	286.5	272.2	-14.4	118.8	0.16
HCN…ICI	2.318	2.347	0.028	2.670	406.5	382.9	-23.6	127.9	0.28
HCN…IF	1.915	1.944	0.029	2.484	639.3	597.8	-41.6	166.3	0.60
HCN…IH	1.596	1.601	0.005	3.167	2426.4	2407.7	-18.7	87.8	-0.06
HCN…II	2.662	2.680	0.018	2.847	230.8	222.5	-8.3	106.6	0.00

Table S4: The A-X bond lengths in an isolated donor and in the corresponding $AX \cdots B$ complex (in Å), X·B bond lengths (in Å), vibrational frequencies of the corresponding stretching modes (in cm⁻¹) and natural charges (q_X) on the halogen atom X in an isolated XB donor obtained at the MP2/aug-cc-pVTZ(PP) level of theory. Note that $q_A = -q_X$.

Table S5:	Electronic d	ipole moment	(in au) at ec	uilibrium	geometries	correspond	ling t	o the	MP2	method
			\ \								

	μ_z^e
HCN···BrBr	-1.82
HCN···BrCl	-2.06
HCN···BrF	-2.57
$HCN \cdots BrH$	-1.06
HCN···IBr	-2.33
HCN…IC1	-2.55
HCN···IF	-2.90
$HCN \cdots IH$	-1.31
HCN···II	-2.01

Table S6: Interaction-induced electronic dipole moment computed at the MP2/aug-cc-pVTZ-PP level of theory. All values are given in au.

	$\Delta\mu_{ m el}^{(10)}$	$\Delta \mu_{\mathrm{ex}}^{\mathrm{HL}}$	$\Delta\mu_{ m del}^{ m HF}$	$\Delta \mu^{ m HF}$	$\Delta\mu_{\mathrm{el,r}}^{(12)}$	$\Delta\mu_{ m disp}^{(20)}$	$\Delta \mu_{\mathrm{ex}}^{(2)}$	$\Delta\mu^{ m MP2}$
HCN···BrBr	-0.40	-0.08	-0.17	-0.66	0.01	0.03	-0.02	-0.64
$HCN \cdots BrCl$	-0.42	-0.06	-0.20	-0.68	0.01	0.03	-0.02	-0.66
HCN···BrF	-0.54	0.05	-0.32	-0.81	0.01	0.02	-0.02	-0.80
$HCN \cdots BrH$	-0.17	0.00	-0.03	-0.20	-0.01	0.00	0.01	-0.19
HCN···IBr	-0.50	-0.19	-0.25	-0.94	0.02	0.06	-0.04	-0.89
HCN…IC1	-0.52	-0.16	-0.27	-0.95	0.02	0.06	-0.04	-0.91
HCN···IF	-0.61	-0.03	-0.33	-0.97	0.03	0.04	-0.04	-0.94
HCN···IH	-0.24	-0.02	-0.05	-0.31	0.00	0.01	-0.00	-0.30
HCN···II	-0.47	-0.21	-0.20	-0.88	0.02	0.06	-0.03	-0.82

	α^{e}_{zz}	α_{zz}^{nr}	$\alpha_{zz}^{e} + \alpha_{zz}^{nr}$	$\alpha_{zz}^{e}/(\alpha_{zz}^{e}+\alpha_{zz}^{nr})$	$\alpha_{zz}^{nr}/(\alpha_{zz}^e+\alpha_{zz}^{nr})$
HCN···BrBr	102.02	24.08	126.10	81%	19%
$HCN \cdots BrCl$	91.22	25.30	116.52	78%	22%
$HCN \cdots BrF$	68.04	27.07	95.10	72%	28%
$HCN \cdots BrH$	52.68	2.59	55.27	95%	5%
HCN···IBr	123.87	39.34	163.21	76%	24%
HCN···IC1	110.37	39.08	149.44	74%	26%
$HCN \cdots IF$	80.76	26.39	107.14	75%	25%
$HCN \cdots IH$	67.30	4.76	72.06	93%	7%
HCN···II	143.89	35.60	179.50	80%	20%

Table S7: Electronic and nuclear relaxation longitudinal polarizability (given in a.u.) and their percentage contributions.

	$lpha^e_{_{ZZ}}$	RR error	α_{zz}^{nr}	$\alpha_{zz}^{e} + \alpha_{zz}^{nr}$	RR error
HCN···BrBr	102.02	0.000008	24.08	126.10	0.014383
HCN···BrCl	91.22	0.000020	25.30	116.52	0.000057
HCN···BrF	68.04	0.000004	27.07	95.10	0.001261
HCN···BrH	52.68	0.000001	2.59	55.27	0.006009
HCN···IBr	123.87	0.000011	39.34	163.21	0.009534
HCN···ICl	110.37	0.000041	39.08	149.44	0.003946
HCN···IF	80.76	0.000002	26.39	107.14	0.002512
HCN···IH	67.30	0.000001	4.76	72.06	0.000003
HCN···II	143.89	0.000013	35.60	179.50	0.016504
	β_{zzz}^{e}	RR error	β_{zzz}^{nr}	$\beta^{e}_{zzz} + \beta^{nr}_{zzz}$	RR error
HCN···BrBr	-355.5	0.030226	-3266.2	-3621.7	1.893596
HCN···BrCl	-245.2	0.003635	-3204.1	-3449.3	2.271960
HCN···BrF	-15.6	0.042520	-2235.0	-2250.6	2.266631
HCN···BrH	-56.4	0.006631	-189.6	-246.0	5.055323
HCN···IBr	-262.6	0.002156	-4780.0	-5042.5	5.376264
HCN···IC1	-92.8	0.044897	-4076.0	-4168.8	5.964590
HCN… IF	190.5	0.013282	-1479.8	-1289.3	7.245777
HCN···IH	-74.0	0.000977	-383.4	-457.4	2.005613
HCN···II	-450.6	0.003152	-5207.9	-5658.6	37.860313
	γ^{e}_{zzzz}	RR error	γ_{zzzz}^{nr}	$\gamma^{e}_{zzzz} + \gamma^{nr}_{zzzz}$	RR error
HCN····BrBr	44278	43	393142	437420	21068
HCN···BrCl	34550	30	366530	401080	83
HCN···BrF	18745	5	73858	92603	9234
HCN···BrH	10224	2	11874	22098	1931
HCN···IBr	53409	72	329321	382730	49404
HCN···ICl	42423	66	185267	227690	7647
HCN… IF	29266	13	-10825	18441	13231
HCN····IH	17385	6	626045	643430	365
HCN···II	71750	83	602380	674130	93743

Table S8: Electronic and nuclear relaxation polarizability and first hyperpolarizability (given in a.u.) at equilibrium geometries corresponding to the MP2 method. The "RR error" accounts for the numerical uncertainty of the reported values determined with the Romberg-Rutishauser (RR) procedure.

	$\Delta \pmb{lpha}_{ m el}^{(10)}$	$\Delta lpha_{ m ex}^{ m HL}$	$\Delta lpha_{ m del}^{ m HF}$	$\Delta lpha^{ m HF}$	$\Delta \alpha_{\rm el,r}^{(12)}$	$\Delta \alpha_{\rm disp}$	$\Delta \alpha_{ex}$	$\Delta \alpha^{\rm MP2}$	$(\Delta \alpha / \alpha)^{(a)}$
HCN…BrBr	15.02	-7.53	8.88	16.37	0.01	1.36	0.91	18.65	0.18
HCN…BrCI	13.95	-7.57	8.77	15.14	0.45	1.32	1.01	17.94	0.20
$HCN \cdots BrF$	12.35	-8.97	9.98	13.36	1.30	1.31	1.07	17.04	0.25
HCN…BrH	6.00	-2.16	1.54	5.39	0.38	0.54	-0.56	5.75	0.11
HCN… IBr	19.21	-12.01	12.43	19.63	0.53	2.10	1.19	23.45	0.19
HCN…ICI	17.72	-11.68	12.05	18.08	1.09	2.01	1.02	22.20	0.20
HCNIF	14.74	-11.26	12.09	15.57	1.97	1.71	0.38	19.63	0.24
HCNIH	8.39	-3.40	2.68	7.68	0.48	0.83	-0.73	8.25	0.12
HCN…II	20.60	-11.73	12.09	20.95	-0.15	2.17	0.59	23.57	0.16

All values are given in au.	
TZ-PP level of theory.	
at the MP2/aug-cc-pV	
olarizability computed	
m-induced electronic p	
Table S9: Interactio	

	$\Delta m eta_{ m el}^{(10)}$	$\Delta \beta_{\mathrm{ex}}^{\mathrm{HL}}$	$\Deltaeta_{ m del}^{ m HF}$	$\Deltaeta^{ m HF}$	$\Delta m{eta}_{\mathrm{el,r}}^{(12)}$	$\Deltam{eta}_{ m disp}^{(20)}$	$\Delta m{eta}_{ m ex}^{(2)}$	$\Delta \beta^{ m MP2}$
HCN····BrBr	31.4	-88.2	-155.0	-211.9	-40.4	28.2	-141.5	-370.2
$HCN \cdots BrCl$	23.0	-57.3	-124.3	-158.2	-46.3	17.2	-101.2	-288.5
$HCN \cdots BrF$	-10.6	27.8	-51.9	-39.5	-51.2	4.0	14.4	-73.3
$HCN \cdots BrH$	-23.2	7.9	-18.9	-34.3	-18.3	1.1	2.0	-49.5
HCN···IBr	121.8	-214.8	-91.5	-184.3	-64.9	47.4	-131.4	-333.3
HCN···ICl	93.5	-155.2	-57.4	-118.7	-56.4	37.6	-66.7	-203.9
$HCN \cdots IF$	10.9	-22.5	33.0	21.4	-38.9	16.1	62.9	61.5
$HCN \cdots IH$	-12.3	-24.0	-21.2	-57.6	-18.4	10.5	-13.0	-78.2
HCN···II	146.7	-285.1	-136.0	-275.7	-48.8	63.7	-214.7	-476.1

Table S10: Interaction-induced electronic first hyperpolarizability computed at the MP2/aug-cc-pVTZ-PP level of theory. All values are given in au.

Table S11: Interaction-induced electronic second hyperpolarizability computed at the MP2/aug-cc-pVTZ-PP level of theory. All values are given in au.

	$\Delta \gamma_{ m el}^{(10)}$	$\Delta \gamma_{\mathrm{ex}}^{\mathrm{HL}}$	$\Delta\gamma_{ m del}^{ m HF}$	$\Delta\gamma^{ m HF}$	$\Delta\gamma_{el,r}^{(12)}$	$\Delta\gamma^{(20)}_{ m disp}$	$\Delta \gamma_{ m ex}^{(2)}$	$\Delta \gamma^{\mathrm{MP2}}$
HCN···BrBr	8211	-10840	18086	15491	3982	2120	10215	31814
$HCN \cdots BrCl$	7030	-9574	15148	12826	3073	1691	7630	25221
$HCN \cdots BrF$	4836	-7713	10989	8040	1791	1096	3563	14463
$HCN \cdots BrH$	3278	-3247	2827	2829	1612	685	-340	4784
HCN···IBr	12714	-18684	24535	18533	4543	3498	8844	35421
$HCN \cdots ICl$	10748	-16139	21353	16162	3251	2800	7530	29685
$HCN \cdots IF$	6540	-11447	17589	12486	2480	1692	6617	23180
$HCN \cdots IH$	5269	-5971	5971	5217	2306	1237	-105	8383
HCN···Ⅱ	15899	-24868	29985	21241	7564	4722	11514	45019

Table S12: Interaction-induced nuclear-relaxation polarizability computed at the MP2/aug-cc-pVTZ-PP level of theory. All values are given in au.

	$\Delta lpha_{ m el}^{(10)}$	$\Delta \alpha_{ex}^{\mathrm{HL}}$	$\Delta lpha_{ m del}^{ m HF}$	$\Delta lpha^{ m HF}$	$\Delta lpha_{{ m el},r}^{(12)}$	$\Delta lpha_{ m disp}^{(20)}$	$\Delta lpha_{ m ex}^{(2)}$	$\Delta \alpha^{\mathrm{MP2}}$
HCN···BrBr	98.48	-181.25	83.93	1.16	6.43	34.34	-20.10	21.83
$HCN \cdots BrCl$	107.19	-197.10	96.56	6.65	6.53	34.74	-22.31	25.62
$HCN \cdots BrF$	99.55	-182.54	112.13	29.13	4.63	22.79	-22.63	33.92
$HCN \cdots BrH$	8.75	-12.45	3.68	-0.07	0.84	3.39	-2.36	1.79
HCN···IBr	153.17	-272.85	145.66	25.81	9.56	44.10	-40.88	39.07
HCN···IC1	140.82	-246.91	140.93	34.86	8.05	35.60	-35.84	42.51
$HCN \cdots IF$	58.09	-87.61	65.07	35.55	1.23	6.60	-12.31	31.06
$HCN \cdots IH$	14.63	-19.97	7.37	2.09	1.05	4.87	-3.74	4.25
HCN···Ⅱ	142.57	-253.61	122.85	11.91	9.60	48.72	-37.81	32.43

Table S13: Interaction-induced nuclear-relaxation first hyperpolarizability computed at the MP2/aug-cc-pVTZ-PP level of theory. All values are given in au.

	$\Delta m{eta}_{ m el}^{(10)}$	$\Deltaeta_{ m ex}^{ m HL}$	$\Deltam{eta}_{ m del}^{ m HF}$	$\Deltaeta^{ m HF}$	$\Delta m{eta}_{\mathrm{el},\mathrm{r}}^{(12)}$	$\Deltam{eta}_{ m disp}^{(20)}$	$\Delta oldsymbol{eta}_{ m ex}^{(2)}$	$\Deltaeta^{ ext{MP2}}$
HCN···BrBr	-12937.8	24693.1	-13605.1	-1956.0	-653.3	-3711.7	2304.4	-3861.2
HCN···BrCl	-13095.3	24968.6	-14563.0	-2690.0	-631.6	-3452.2	2588.9	-4234.7
HCN···BrF	-5306.8	9478.4	-8500.6	-4324.3	-108.4	-539.7	1330.6	-3652.8
$HCN \cdots BrH$	-609.0	835.3	-326.2	-106.2	-62.1	-134.6	129.1	-171.5
HCN···IBr	-14167.1	25432.5	-18377.7	-7112.5	-610.0	-1998.7	3257.3	-6222.6
HCN···IC1	-8556.8	14235.4	-13170.9	-7492.7	-193.0	-275.2	1891.5	-6020.2
$HCN \cdots IF$	-25.5	-1468.1	-1356.8	-2855.0	162.8	633.2	-209.4	-2265.6
HCN···IH	-1097.5	1536.8	-708.2	-268.8	-92.6	-261.9	245.0	-378.6
HCN···II	-19380.6	35696.7	-20923.7	-4603.8	-1064.4	-4824.2	4953.6	-5538.0

Table S14: Curvature contributions to electric properties (in au). The corresponding numerical errors are shown in parentheses.

	$\mu_z^{ m curv}$	$\alpha_{zz}^{\mathrm{curv}}$	$eta_{zzz}^{ ext{curv}}$	$\gamma_{zzzz}^{\mathrm{curv}}$
HCN···BrBr	0.06 (0.000)	1.15 (0.001)	351.0 (6)	101650 (2630)
$HCN \cdots BrCl$	0.06 (0.000)	1.32 (0.000)	346.1 (5)	123100 (1800)
$HCN \cdots BrF$	0.05 (0.000)	1.45 (0.000)	34.7 (2.0)	29796 (369)
$HCN \cdots BrH$	0.06 (0.000)	1.77 (0.001)	345.3 (6.1)	123292 (2715)
HCN···IBr	-0.07(0.000)	0.57 (0.003)	-379.0 (4.7)	192527 (16427)
$HCN \cdots ICl$	0.06 (0.000)	1.13 (0.000)	214.1 (2.2)	158458 (3158)
$HCN \cdots IF$	0.05 (0.000)	1.92 (0.000)	6.9 (0.0)	17434 (1)
$HCN \cdots IH$	0.05 (0.000)	2.11 (0.000)	325.6 (28.0)	140286 (10206)
$HCN \cdots II$	0.07 (0.000)	1.09 (0.001)	790.1 (4.5)	167756 (17549)

Figure S1 Linear regression analysis of the ΔE^{MP2} (green), ΔE^{HF} (red), and $\Delta \varepsilon_{el}^{(10)}$ (blue) values on (a) the vibrational frequencies of the X...B stretching mode and (b) the natural partial charge on the X atom (q_x) in an isolated XB donor molecule. (c) The linear regression between the ΔE^{MP2} and $\Delta \varepsilon_{disp}^{(20)}$ values for the whole set of XB complexes. (d) The linear regression between the change of the A–X bond length (Δd (A–X)) and the natural partial charge on the X atom (q_x). The red and green points correspond to bromine-and iodine-bonded complexes, respectively.