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S0. Detailed derivation for extended CHE approximation.
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S1. Corrections to homogeneous background method due to introduction of the background charge.

The inclusion of the background charge distributed homogeneously across the entire unit cell requires 

a couple of corrections to the computed DFT energy.1,2

The interaction of the homogeneous background with the charged system gives a non-physical 

chemical potential that contributes to the energy computed via DFT. This can be a source of large 

errors and energy correction is necessary.2 As the charge of the homogeneous background is exactly 

the opposite than the charge of excess electrons, it holds that:

(1)𝑁𝑏𝑔 = 𝑁𝑒

Where Ne and Nbg are the numbers of added/withdrawn electrons and of background charges, 

respectively. The differential of the total computed energy can be written as:

(2)𝑑𝐸𝐷𝐹𝑇(𝑁𝑒) = �̃�𝑒𝑑𝑁𝑒 + �̃�𝑏𝑔𝑑𝑁𝑏𝑔 = (�̃�𝑒 + �̃�𝑏𝑔)𝑑𝑁𝑒

Where  and  are the electrochemical potentials of the charged system and the homogeneous �̃�𝑒 �̃�𝑏𝑔

background, respectively. The latter can be calculated from its electrostatic interaction with the 

charged system over the whole unit cell volume :Ω

(3)
�̃�𝑏𝑔 =

‒ 𝑒0

Ω ∫
Ω

𝑉(𝑟,𝑁𝑒)𝑑𝑟 = 𝑒0𝑉𝑎(𝑁𝑒)

Where  is the electrostatic potential and  is the potential averaged over the unit cell. 𝑉(𝑟, 𝑁𝑒) 𝑉𝑎(𝑁𝑒)

Substituting Eq. 3 into Eq. 2 and taking into account that the real electronic energy is  we get:𝐸𝑒 = �̃�𝑒𝑁𝑒

(4)
𝐸𝑒 = 𝐸𝐷𝐹𝑇(𝑁𝑒) + 𝑒0

𝑁𝑒

∫
0

𝑉𝑎(𝑁)𝑑𝑁

Another correction is needed due to a non-physical bulk charge in the metal slab that is induced by the 

homogeneous background. The bulk charge in the metal slab is neutralized by using a fraction of the 

added/withdrawn electrons to screen the background charge, meaning that this specific fraction of 

added/withdrawn electrons is not used for the surface charging, i.e. not for the tuning of the potential 
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of the system.2 To make a correction of this effect, the charging of the system is decomposed into 

electrochemical part arising from the active charge used for the tuning of the potential  and a 𝑁𝑎𝑐𝑡𝑖𝑣𝑒

non-physical bulk metal charge :2𝑁𝑏𝑢𝑙𝑘

(5)𝜇𝑒𝑑𝑁𝑒 = 𝜇𝑒(𝑑𝑁𝑎𝑐𝑡𝑖𝑣𝑒 + 𝑑𝑁𝑏𝑢𝑙𝑘) = 𝑑𝐸𝐷𝐹𝑇 + 𝜇𝑏𝑑𝑁𝑒

where the last equality was obtained using Eq. 2. As the average charge in the metal slab has to be 

zero, the fraction of the background charge in the metal is neutralized by a fraction of the 

added/withdrawn electrons. If the vacuum size is , the fraction of the added/withdrawn electrons 𝑑0

needed to keep the bulk uncharged can be estimated by considering the entire unit cell size  in 𝑑

comparison to that of the metal :𝑑 ‒ 𝑑0

(6)
𝑁𝑏𝑢𝑙𝑘 ≈

𝑁𝑒(𝑑 ‒ 𝑑0)
𝑑

 The number of electrons used to charge the system is then:
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𝑑

The physically meaningful energy comes from the surface charging:
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Integration gives:
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The final energy correction is obtained by using the Eq. 3 and rearranging:
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S2. Computational details. 

Periodic DFT calculations were performed using the Vienna Ab Initio Simulation Package (VASP)3,4 

within the generalized gradient approximation (GGA) using PBE5 functional for exchange and 

correlation potential and projector augmented wave pseudopotentials (PAW)6 with a cut-off energy of 

450 eV. Long-range electrostatic interactions between interfaces arising from periodic boundary 

conditions were avoided by building a symmetric unit cell. For magnesium calculations, the electrode 

surfaces were modelled with a 5-layer symmetric slab of Mg (0001) surface in a (5 x 5) supercell. One 

Mg2+ solvated cation with explicit solvent molecules was added at each side of the slab (Figs. S1a and 

S1b) symmetrically. This ensured a homogeneous charging of both sides of the slab for the 

electrochemical calculations to coherently extract the energetic of the charge interfaces (Fig. S1c). The 

interslab distance between periodic surfaces was set to 40 Å and an implicit solvent was added by 

means of a Polarizable Continuum Model (PCM) as provided by VASPSOL.7,8 The PCM is parameterized 

with the solvent dielectric constant (i.e. DME  = 7.20) and the cavity size defined by an electronic 𝜀𝑟

density cut-off parameter (Fig. S1). The density cut-off parameter was determined as 2.5 × 10−5 for the 

studied systems. As previously shown,9 the use of PCM makes the electrochemical properties mostly 

independent of the vacuum size. The Brillouin zone integration in k-space was performed on a 4 × 4 × 

1 k-point grid. Structural relaxations were performed on all atoms except the central Mg-slab layer, 

which was kept frozen to bulk parameters. The residual forces after structural relaxation were lower 

than 0.01 eV/Å and all molecules are allowed to re-orientate without external constrain.  Due to the 

large vacuum layer allowing a clear-cut separation between surface and cation, the surface and 

solvated cation charges were obtained by direct electron density grid integration. 

For platinum calculations, 7-layers symmetric slabs of Pt (111) surface were used. CO molecules were 

added on top position at each side of the slab. The vacuum width was set to 15 Å. The implicit solvation 

was defined considering water dielectric constant (  = 78.5) and a density cut-off parameter of 2.5 x 𝜀𝑟

10-4.  The Brillouin zone integration in k-space was performed on a 9 x 9 x 1 k-point grid. 

S3 Potential dependent Fukui function calculation
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Potential-dependent Fukui function is computed using the following procedure. The 𝑓(𝑉( 𝑁𝑒)) 

equilibrium structure obtained for a given potential V associated with a charge   is computed at 𝑁𝑒

DFT level and the corresponding charge density grid  is extracted. Using the same geometry 𝜌( 𝑁𝑒)

and a single point calculation, a new charge density grid  is computed by adding a fraction 𝜌( 𝑁𝑒 + 𝜀)

of  electron to the system (  in the present calculations). The Fukui function grid is then 𝜀 𝜀 = 0.1

extracted by finite difference using  . 
𝑓(𝑉) =

𝜌( 𝑁𝑒 + 𝜀) ‒ 𝜌( 𝑁𝑒)
𝜀
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Figure S1. (a) Unit cell of a bare magnesium surface (reduced system) and (b) magnesium solvated in 

monoglyme (oxidized system). (c) Averaged potential over (x,y)-plane for magnesium surface and 

magnesium solvated in monoglyme at the computed equilibrium potential of the two systems (-2.39 

V/SHE = 2.11 V/vacuum). The symmetry of the averaged potential allows unambiguous determination 

of the vacuum potential and Fermi levels, i.e. the potential of the system. A bump in the averaged 

potential appearing at approximately 3.5 Å from the surface indicates where PCM starts taking hold. 

It is tuned by the electronic density cut-off parameter which was set to 2.5 × 10−5 for the studied 

systems. The shaded region in all three figures is a schematic representation of the region where PCM 

is taken into account. As the plot is done for equilibrium potential, the Fermi levels of the two systems 

are aligned. In the calculation for bare surface 0.6 electron was added to shift the system from 

potential of zero charge to the equilibrium potential, while in solvated Mg calculation 1.6 electrons is 

subtracted.1 
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Figure S2. (a) Unit cell of  system. (b) Charge distribution averaged over the ( )-plane in 𝑀𝑔(𝐷𝑀𝐸)2 +
3 𝑥,𝑦

the  system. Note that the surface charge and the charge on solvated Mg2+ complex are 𝑀𝑔(𝐷𝑀𝐸)2 +
3

clearly separated. This allows for unambiguous definition of surface and 2+ complex charge via 𝑀𝑔

integration of the plotted charge distribution in the region of surface and Mg complex, respectively.1 
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