Molecular dynamics simulations reveal distinct differences in conformational

 dynamics and thermodynamics between the unliganded and CD4-bound states of HIV-1 gp120Yi Li, ${ }^{\text {a,b }}$ Lei Deng, ${ }^{a}$ Jing Liang, ${ }^{a}$ Guang-Heng Dong, ${ }^{a}$ Yuan-Ling Xia, ${ }^{a}$ Yun-Xin Fu ${ }^{*}{ }^{c}$ and Shu-Qun Liu ${ }^{*}{ }^{a}$
${ }^{\text {a }}$ State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan \& School of Life Sciences, Yunnan University, Kunming 650091, China. E-mail: shuqunliu@ynu.edu.cn
${ }^{b}$ College of Mathematics and Computer Science, Dali University, Dali 671003, China.
${ }^{\text {chHuman Genetics Center and Division of Biostatistics, School of Public Health, the University of Texas Health Science Center, }}$ Houston, USA. E-mail: Yunxin.Fu@uth.tmc.edu

Fig. S1 Sequence alignment for building the structural model of the unliganded gp120. "5FYJ_G" represents the sequence of the template extracted from the crystal structure with PDB ID 5FYJ (chain G), ${ }^{1}$ and "unliganded gp120" represents the target sequence. Conserved residues are shaded in light blue. Regular secondary structural elements are numbered according to the crystal structures with PDB IDs $3 J 70^{2}$ and 3 JWD ${ }^{3}$ from the HIV-1 HXBc2 isolate, with spirals (red) and arrows (orange) denoting the α-helix and β-strand, respectively. The four blue line segments drawn above the alignment indicate the variable regions V1/V2, V3, V4, and V5, respectively. In the V1/V2 region, the four β-strands are labelled β A to $\beta \mathrm{D}$, respectively, and the three connecting loops, i.e., the loop V1 (between βA and βB), L1 (between $\beta \mathrm{B}$ and $\beta \mathrm{C}$), and V 2 (between $\beta \mathrm{C}$ and $\beta \mathrm{D}$), are also labelled.

No. of residues $\%=$ tage

Most favored regions	$[\mathrm{A}, \mathrm{B}, \mathrm{L}]$	373	91.0%
Additional allowed regions	$[\mathrm{a}, \mathrm{b}, \mathrm{l}, \mathrm{p}]$	32	7.8%
Generously allowed regions	$[\sim \mathrm{a}, \sim \mathrm{b}, \sim 1, \sim \mathrm{p}]$	2	0.5%
Disallowed regions	$[\mathrm{XX}]$	3	0.7%
Total number of residues		462	

Fig. S2 Ramachandran plot of the constructed structural model of the unliganded gp120.

Table S1 Cosine contents of the first three eigenvectors (Eigs. 1 to 3) for the unliganded and CD4-complexed gp120s calculated from the equilibrated portions of the 10 independent replicas ($10-100 \mathrm{~ns}$; replicas 1-10) and the 900 -ns joined equilibrium trajectories.

	Unliganded			CD4-complexed		
	Eig. 1	Eig. 2	Eig. 3	Eig. 1	Eig. 3	
Replica 1	0.5796	0.3210	0.0408	0.6624	0.2412	0.3600
Replica 2	0.6543	0.0561	0.0024	0.0234	0.2040	0.0327
Replica 3	0.3368	0.1697	0.0179	0.5688	0.0642	0.1059
Replica 4	0.7652	0.2472	0.0024	0.0506	0.6243	0.3437
Replica 5	0.0440	0.0816	0.0000	0.4934	0.0016	0.0807
Replica 6	0.2240	0.0404	0.3412	0.5208	0.0222	0.0107
Replica 7	0.8223	0.0963	0.0033	0.3998	0.3055	0.0016
Replica 8	0.8381	0.3207	0.0703	0.6430	0.6253	0.4043
Replica 9	0.4874	0.0274	0.0025	0.5999	0.3918	0.1189
Replica 10	0.0862	0.0130	0.2126	0.7029	0.2496	0.0298
Joined	0.1296	0.0266	0.0067	0.0137	0.0748	0.0070

References

1. G. B. Stewart-Jones, C. Soto, T. Lemmin, G. Y. Chuang, A. Druz, R. Kong, P. V. Thomas, K. Wagh, T. Zhou, A. J. Behrens, T. Bylund, C. W. Choi, J. R. Davison, I. S. Georgiev, M. G. Joyce, Y. D. Kwon, M. Pancera, J. Taft, Y. Yang, B. Zhang, S. S. Shivatare, V. S. Shivatare, C. C. Lee, C. Y. Wu, C. A. Bewley, D. R. Burton, W. C. Koff, M. Connors, M. Crispin, U. Baxa, B. T. Korber, C. H. Wong, J. R. Mascola and P. D. Kwong, Cell, 2016, 165, 813-826.
2. M. Rasheed, R. Bettadapura and C. Bajaj, Structure, 2015, 23, 1138-1149.
3. M. Pancera, S. Majeed, Y. E. A. Ban, L. Chen, C. C. Huang, L. Kong, Y. D. Kwon, J. Stuckey, T. Zhou, J. E. Robinson, W. R. Schief, J. Sodroski, R. Wyatt and P. D. Kwong, Proc. Natl. Acad. Sci. U. S. A., 2009, 107, 1166-1171.
