Supporting Information for

Thermochemical Studies of Re⁺ Reactions with SO₂ using Guided Ion Beam

Experiments and Theory

JungSoo Kim, Richard M Cox, and P. B. Armentrout Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, UT 84112

References

1. Kesharwani, M. K.; Brauer, B.; Martin, J. M. L., Frequency and Zero-Point Vibrational Energy Scale Factors for Double-Hybrid Density Functionals (and Other Selected Methods): Can Anharmonic Force Fields Be Avoided? *J. Phys. Chem. A* **2014**, *119*, 1701-1714.

2. NIST Computational Chemistry Comparison and Benchmark Database, NIST Computational Chemistry Comparison and Benchmark Database, April 2018. Johnson III, R. D., <u>http://cccbdb.nist.gov/</u> (accessed April 12, 2018).

3. Armentrout, P. B., The Bond Energy of ReO^+ : Guided Ion-Beam and Theoretical Studies of the Reaction of Re^+ (⁷S) with O₂. *J. Chem. Phys.* **2013**, *139*, 084305.

	def2-TZVPPD	def2-QZVPPD	aug-cc-pVTZ	aug-cc-pVQZ	aug-cc-pV5Z
B3LYP	0.9885 ^a	0.9892 ^b	0.9896 ^b	0.9893 ^b	0.9893 ^b
BP86	1.0193 ^a	1.0192 ^b	1.0195 ^b	1.0192 ^b	1.0192 ^b
CCSD(T)	0.9868 ^b	0.9862 ^b	0.9868 ^b	0.9871 ^b	0.9871 ^b

Table S1. Scaling factors for zero-point energies and frequencies in theoretical values.

^a Taken directly from Ref.¹.

^b Taken from similar levels in Ref. ¹.

	Basis Set	B3LYP	BP86	CCSD(T)	Expt. ^b
D ₀ (OS-O)	def2-TZVPPD	5.26	5.85	5.29	5.66 ± 0.02
	def2-QZVPPD	5.31	5.89	5.50	
	aug-cc-pVTZ	4.95	5.56	5.07	
	aug-cc-pVQZ	5.14	5.73	5.39	
	aug-cc-pV5Z	5.31	5.88	5.58	
	CBS ^a			5.84	
$D_0(S-O_2)$	def2-TZVPPD	5.41	5.79	5.52	5.900 ± 0.004
	def2-QZVPPD	5.47	5.84	5.73	
	aug-cc-pVTZ	4.99	5.40	5.19	
	aug-cc-pVQZ	5.23	5.60	5.57	
	aug-cc-pV5Z	5.46	5.82	5.83	
	CBS ^a			6.15	
$D_0(S-O)$	def2-TZVPPD	5.40	6.00	5.06	5.36 ± 0.02
	def2-QZVPPD	5.43	6.01	5.22	
	aug-cc-pVTZ	5.28	5.88	5.00	
	aug-cc-pVQZ	5.37	5.95	5.20	
	aug-cc-pV5Z	5.43	6.02	5.31	
	CBS ^a			5.41	
Vibrational Frequency	def2-TZVPPD	513, 1163, 1360	498, 1127, 1326	507, 1159, 1371	518, 1151, 1362
SO_2	def2-QZVPPD	516, 1166, 1361	500, 1128, 1326	514, 1158, 1367	
	aug-cc-pVTZ	507, 1143, 1322	492, 1106, 1285	500, 1137, 1332	
	aug-cc-pVQZ	513, 1154, 1341	498, 1117, 1305	511, 1146, 1346	
	aug-cc-pV5Z	516, 1164, 1359	501, 1127, 1324	516, 1157, 1363	
Rotational Constant	def2-TZVPPD	1.989, 0.343, 0.292	1.945, 0.333, 0.284	1.989, 0.343, 0.292	2.027, 0.344, 0.294
SO_2	def2-QZVPPD	1.997, 0.344, 0.294	1.953, 0.334, 0.285	1.997, 0.344, 0.294	
	aug-cc-pVTZ	1.898, 0.340, 0.288	1.853, 0.330, 0.280	1.898, 0.340, 0.288	
	aug-cc-pVQZ	1.947, 0.343, 0.291	1.902, 0.333, 0.283	1.947, 0.343, 0.291	
	aug-cc-pV5Z	1.993, 0.344, 0.293	1.949, 0.334, 0.285	1.993, 0.344, 0.293	

Table S2. Theoretical and experimental bond dissociation energies (eV), vibrational frequencies (cm⁻¹), rotational constants (cm⁻¹), and bond lengths (Å) of SO₂.

Bond Length	def2-TZVPPD	1.438, 2.480	1.457, 2.516	1.438, 2.480	1.432
r(S-O), r(O-O)	def2-QZVPPD	1.435, 2.475	1.455, 2.511	1.435, 2.475	
	aug-cc-pVTZ	1.451, 2.491	1.472, 2.528	1.451, 2.491	
	aug-cc-pVQZ	1.442, 2.480	1.462, 2.517	1.442, 2.480	
	aug-cc-pV5Z	1.435, 2.475	1.455, 2.511	1.435, 2.475	

^a Complete basis set limit obtained as discussed in the text. ^b Ref. ².

State	Level	Basis Set	$r(M-S)$ (Å) E (E_h)		$\omega_{e} (cm^{-1})^{a}$	D ₀ (eV)	$D_0 (eV)^b$ incl S.O.
⁵ Π	B3LYP	def2-TZVPPD	2.087	-476.175726	505	3.52	3.67
		def2-QZVPPD	2.085	-476.190019	506	3.53	3.69
		aug-cc-pVTZ	2.086	-476.481417	505	3.51	3.67
		aug-cc-pVQZ	2.082	-476.486110	508	3.54	3.70
		aug-cc-pV5Z	2.079	-476.490347	510	3.57	3.73
	BP86	def2-TZVPPD	2.083	-476.300468	545	4.11	4.27
		def2-QZVPPD	2.082	-476.315115	545	4.13	4.29
		aug-cc-pVTZ	2.082	-476.601522	545	4.09	4.25
		aug-cc-pVQZ	2.078	-476.606435	546	4.13	4.28
		aug-cc-pV5Z	2.076	-476.611406	548	4.16	4.32
	CCSD(T)	def2-TZVPPD	2.087	-475.386981	514	3.02	3.18
		def2-QZVPPD	2.085	-475.470883	509	3.17	3.33
		aug-cc-pVTZ	2.086	-475.730400	511	3.04	3.19
		aug-cc-pVQZ	2.082	-475.809426	509	3.23	3.38
		aug-cc-pV5Z	2.069	-475.849155	525	3.31	3.47
		CBS ^c		-475.891214	525	3.42	3.58

Table S3. Theoretical calculations at various levels of theory for ReS^+ .

State	Level	Basis Set	r(M-S) (Å)	E (E _h)	$\omega_e (cm^{-1})^a$	$E_{rel} (\mathrm{eV})$	E_{rel} (eV) ^b incl S.O.
³ Σ ⁻	B3LYP	def2-TZVPPD	2.010	-476.162277	587	0.37	0.52
		def2-QZVPPD	2.009	-476.176582	587	0.37	0.52
		aug-cc-pVTZ	2.009	-476.467816	589	0.37	0.53
		aug-cc-pVQZ	2.005	-476.472922	590	0.36	0.52
		aug-cc-pV5Z	2.003	-476.477356	592	0.35	0.51
	BP86	def2-TZVPPD	2.012	-476.285501	612	0.41	0.57
		def2-QZVPPD	2.011	-476.299999	612	0.41	0.57
		aug-cc-pVTZ	2.011	-476.586164	614	0.42	0.58
		aug-cc-pVQZ	2.008	-476.591380	614	0.41	0.57
		aug-cc-pV5Z	2.006	-476.596503	615	0.41	0.56
	CCSD(T)	def2-TZVPPD	2.010	-475.369848	592	0.47	0.62
		def2-QZVPPD	2.009	-475.455045	590	0.43	0.59
		aug-cc-pVTZ	2.009	-475.714403	594	0.44	0.59
		aug-cc-pVQZ	2.005	-475.794645	594	0.40	0.56
		aug-cc-pV5Z	2.013	-475.834726	577	0.39	0.55
		CBS ^c		-475.877636	577	0.37	0.53

Table S3. Theoretical calculations at various levels of theory for ReS⁺ (Cont.).

State	Level	Basis Set	r(M-S) (Å)	E (E _h)	$\omega_e (cm^{-1})^a$	$E_{rel} (\mathrm{eV})$	E_{rel} (eV) ^b incl S.O.
$^{3}\Delta$	B3LYP	def2-TZVPPD	2.014	-476.154834	602	0.57	0.41
		def2-QZVPPD	2.013	-476.169204	601	0.57	0.41
		aug-cc-pVTZ	2.013	-476.459749	603	0.59	0.43
		aug-cc-pVQZ	2.009	-476.464963	604	0.58	0.42
		aug-cc-pV5Z	2.007	-476.469408	606	0.57	0.41
	BP86	def2-TZVPPD	2.018	-476.280343	616	0.55	0.39
		def2-QZVPPD	2.017	-476.294960	615	0.55	0.39
		aug-cc-pVTZ	2.017	-476.580563	617	0.57	0.41
		aug-cc-pVQZ	2.014	-476.585919	617	0.56	0.40
		aug-cc-pV5Z	2.012	-476.591087	618	0.55	0.40
	CCSD(T)	def2-TZVPPD	2.014	-475.359860	597	0.74	0.58
		def2-QZVPPD	2.013	-475.445125	593	0.70	0.54
		aug-cc-pVTZ	2.013	-475.702781	597	0.75	0.59
		aug-cc-pVQZ	2.009	-475.784662	597	0.67	0.52
		aug-cc-pV5Z	2.007	-475.825732	596	0.64	0.48
		CBS ^c		-475.867933	596	0.63	0.48

Table S3. Theoretical calculations at various levels of theory for ReS^+ (Cont.).

^a Vibrational frequency scaled by factors indicated in Table S1. ^b Bond dissociation energy (roman) or relative energy to ground state (italic). ^c Complete basis set limit obtained as discussed in the text.

State	Species	r(Re-S) (Å)	r(Re-O) (Å)	r(Re-O) (Å)	r(S-O) (Å)	r(S-O) (Å)	۲OReS (°)	کا ک	∠OReSO (°)	00e (cm ⁻¹) ^a	$E(E_h)$	E_{rel} (eV) ^b	Erel (kJ/mol) ^b
Re SC	$^{+}(^{7}S) + D_{2}(^{1}A_{1})$				1.438	1.438				513, 1163, 1360	-626.632496	0.00	0.0
Re SC	$^{+}(^{5}D) + D_{2}(^{1}A_{1})$				1.438	1.438				513, 1163, 1360	-626.554407	2.12	205.0
Re SC	$^{+}$ (³ H) + D ₂ (¹ A ₁)				1.438	1.438				513, 1163, 1360	-626.523466	2.97	286.3
⁷ A'	Re ⁺ OSO ⁷ 1′	3.824	2.466	4.285	1.469	1.426	10.4	19.2	180.0	52, 103, 148, 513, 1109, 1336	-626.659134	-0.72	-69.9
⁷ A	⁷ TS1′/1	3.030	1.889	2.961	1.688	1.475	30.1	28.5	152.8	-83, 125, 400, 536, 606, 1125	-626.646218	-0.37	-36.0
⁷ A″	$\frac{\text{Re}^{+}\text{O}_{2}\text{S}}{^{7}\text{I}}$	2.891	1.915	2.540	1.667	1.499	33.4	31.2	180.0	106, 126, 399, 640, 657, 1067	-626.646979	-0.39	-38.0
⁷ A″	⁷ TS1/2	2.638	1.784	3.124	2.362	1.481	61.0	28.2	180.0	-211, 64, 95, 252, 784, 1083	-626.590400	1.15	110.5
⁷ A	ORe ⁺ SO	2.611	1.695	3.388	4.181	1.484	151.6	24.5	83.1	76, 105, 156, 198, 989, 1095	-626.628486	0.11	10.5
⁷ A″	⁷ TS1/3	3.424	1.717	2.839	2.576	1.482	46.9	25.2	180.0	-190, 74, 90, 235, 847, 1123	-626.618506	0.38	36.7
^{7}A	ORe ⁺ OS	3.532	1.695	2.175	4.948	1.509	139.7	13.7	121.2	70, 112, 126, 290, 999, 1109	-626.658471	-0.71	-68.2
⁷ A	⁷ TS3/4	2.786	1.668	1.889	4.140	2.805	135.2	70.8	125.9	-138, 123, 137, 197, 576, 1026	-626.582994	1.35	130.0

Table S4. Various states of ReSO₂⁺ calculated at the B3LYP/def2-TZVPPD level of theory

^{7}A	$\frac{SRe^+O_2}{^{7}4}$	2.514	1.670	1.966	3.689	2.734	122.4	74.1	120.6	131, 156, 186, 237, 522, 1015	-626.584502	1.31	126.0
⁵ A	Re ⁺ OSO ⁵ 1′	2.495	1.899	3.314	1.651	1.438	41.4	23.7	101.1	125, 266, 395, 555, 738, 1253	-626.659504	-0.74	-70.9
⁵ A	⁵ TS1'/3	2.311	1.808	1.960	2.111	1.623	60.2	43.7	129.0	-519, 203, 281, 460, 784, 799	-626.620643	0.32	31.1
⁵ A	ORe ⁺ OS	2.427	1.665	2.015	3.787	1.598	134.6	40.9	111.0	139, 183, 309, 477, 883, 1046	-626.703759	-1.94	-187.1
⁵ A	⁵ TS3/4	2.428	1.678	1.787	3.526	2.136	117.2	58.6	125.4	-415, 79, 246, 332, 813, 1033	-626.660721	-0.77	-74.1
${}^{5}B_{2}$	SRe ⁺ O ₂ ⁵ 4	2.611	1.684	1.684	3.748	3.748	119.9	120.0	180.0	77, 78, 215, 322, 972, 1050	-626.690774	-1.59	-153.0
³ A	Re ⁺ OSO ³ 1′	2.423	1.776	3.273	1.809	1.434	48.1	23.7	99.7	168, 287, 309, 403, 829, 1277	-626.620066	0.34	32.6
³ A	³ TS1′/1	2.258	1.938	2.526	1.631	1.491	44.9	35.8	115.3	-235, 336, 386, 477, 788, 1058	-626.619496	0.35	34.1
³ A″	$\frac{\text{Re}^{+}\text{O}_{2}\text{S}}{{}^{3}\text{I}}$	2.219	2.000	2.000	1.593	1.592	44.0	44.0	121.0	324, 386, 434, 481, 831, 849	-626.635034	-0.07	-6.7
³ A	³ TS1/3	2.309	1.814	1.958	1.931	1.588	54.3	42.7	124.1	-361, 334, 390, 492, 785, 860	-626.627245	0.14	13.8
³ A	ORe ⁺ OS ³ 3	2.290	1.670	1.958	3.581	1.619	128.8	43.9	112.9	123, 193, 338, 480, 853, 1044	-626.716886	-2.30	-221.6
³ A	³ TS3/4	2.296	1.669	1.742	3.460	2.056	120.8	59.3	105.0	-672, 166, 246, 388, 871, 1045	-626.689886	-1.56	-150.7
³ A″	$\frac{SRe^{+}O_{2}}{^{3}4}$	2.237	1.677	1.677	3.267	3.269	112.4	112.5	131.4	150, 167, 302, 436, 999, 1054	-626.753620	-3.30	-318.0
ReO S($^{+}({}^{5}\Pi)^{c} + O({}^{3}\Sigma^{-})$		1.679			1.489				1015 (ReO ⁺) 1145 (SO)	-626.601301	0.69	66.7

OReS ⁺ (⁵ A") + O (³ P)	2.260	1.663			126.6	161, 398, 1038	-626.528780	2.81	271.4
$ReOS^{+}(^{5}A') + O(^{3}P)$	2.232	1.889	1.688		47.5	393, 548, 790	-626.502969	3.51	339.1
$\frac{\text{ReO}^+ (^3\Delta) ^{\text{c}} +}{\text{SO} (^3\Sigma^-)}$		1.613		1.489		1157 (ReO ⁺) 1145 (SO)	-626.600099	0.57	54.6
ReO ₂ ⁺ (³ B ₁) ^c + S (³ P)		1.669	1.669			348, 994, 1074	-626.617104	0.39	38.1
$OReS^{+} (^{3}A'') + O (^{3}P)$	2.077	1.667			111.1	276, 560, 1027	-626.576606	1.51	145.8
$\frac{\text{ReS}^{+} (^{5}\Pi) +}{\text{O}_{2} (^{3}\Sigma^{-})}$	2.087					505 (ReO ⁺) 1618 (O ₂)	-626.562822	1.74	167.7
ReS ⁺ (⁵ Π) + 2O (³ P)	2.087					505	-626.369683	6.97	672.9

^a Vibrational frequencies scaled by 0.9885, Table S1.

^b Energy relative to the ground reactant state: Re^+ (⁷S₃) + SO₂ (¹A₁).

^c Ref. ³