Electronic Supplementary Information

Lithium-Ion Coordination-Induced Conformational Change of PEG Chains in Ionic-Liquid-Based Electrolytes

Yuji Kamiyama,^a Masayuki Shibata,^a Ryo Kanzaki,^b and Kenta Fujii^{a,*}

^{a.} Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.

^{b.} Graduate School of Science and Engineering, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan.

Determination of desolvation number (n_d) of TFSA anions from Raman data.

For the Li⁺–PEG complexation in LiTFSA/[C₂mIm][TFSA] solutions, we assumed herein the following equilibrium,

$$[\text{Li}(\text{TFSA})_{n\text{TFSA}}]^- + \text{EG} \rightleftharpoons [\text{Li}(\text{TFSA})_{n\text{TFSA}-nd}(\text{EG})] + n_d\text{TFSA}$$

where EG denotes a monomer unit of PEG (i.e., ethylene glycol unit). The n_d is defined as the desolvation number of the bound TFSA per one EG, as the following equation.

$$n_{\rm d} = \frac{c_{\rm f} - c_{\rm f}'}{c_{\rm EG}}$$

where c_f and $c_{f'}$ are the concentration for free TFSA in 1.0 M LiTFSA/[C₂mIm][TFSA] solutions with and without PEG, respectively. c_{EG} is the concentration for EG unit. The integrated intensity of the single Raman band for free TFSA in LiTFSA/[C₂mIm][TFSA]+PEG solution is represented as $I_f = J_f c_f$, where J_f is the Raman scattering coefficient for free TFSA. Total concentration of TFSA anions (c_T) in LiTFSA/[C₂mIm][TFSA] solution is given by the equation, $c_T = c_f + c_b$, where c_b is the concentration for bound TFSA. Considering the mass balance equation: $c_f' = c_T - c_b' =$ $c_T - n_{TFSA}c_{Li}$, where n_{TFSA} and c_{Li} are the solvation number of TFSA in the first Li-ion solvation sphere and the concentration of Li salt, respectively, we can obtain the following equation,

$$\left(\frac{I_{\rm f}}{J_{\rm f}}\right) - (c_{\rm T} - n_{\rm TFSA}c_{\rm Li}) = n_{\rm d}c_{\rm EG}$$

Table S1. Density *d*, compositions (number of ion-pairs and PEG molecules), and box length of the systems for MD simulations. a: $[C_2mIm][TFSA] + PEG$, b: 1.0 M LiTFSA/ $[C_2mIm][TFSA] + PEG$, c: 1.0 M LiTFSA/ $[C_2mIm][TFSA]$.

sample –	$d / \text{g cm}^{-3}$		- LITESA	[C _e mIm][TFSA]	linear PEG	Box length / Å
	Exp.	MD	LIII'5A		$(M_{\rm w}:600)$	Dox length / A
а	1.444	1.476	-	256	24	50.57
b	1.516	1.558	78	256	24	52.67
c	1.579	1.636	155	512	-	62.93

Fig. S1. Raman spectra of 1.0 M LiTFSA/[C₂mIm][TFSA] solutions with various c_{PEG} using LinearPEG of (a) $M_{\text{w}} = 600 \text{ g mol}^{-1}$ and (b) 20 000 g mol⁻¹.

Fig. S2. Raman spectra in the range 780–900 cm⁻¹ for 1.0 M LiTFSA/[C₂mIm][TFSA] solutions with various c_{PEG} (TetraPEG).

Fig. S3. (a) Raman spectra observed for the LiTFSA/[C₂mIm][TFSA] solutions with varying $c_{\text{Li.}}$ (b) The typical result of deconvoluted Raman bands based on a least-squares curve fitting analysis for $c_{\text{Li}} = 1.0$ M solution. (c) $I_{\text{f}}/c_{\text{T}}$ vs. $c_{\text{Li}}/c_{\text{T}}$ plots.

The integrated intensity of the deconvoluted band for the free TFSA is represented as $I_f = J_f c_f$, where J_f and c_f stand for the Raman scattering coefficient and concentration, respectively, of the free TFSA. Considering the mass balance equations: $c_f = c_T - c_b = c_T - n_{TFSA}c_{Li}$, where c_T , c_b , and c_{Li} denote the concentrations of total TFSA, TFSA bound to Li⁺ ions (bound TFSA), and Li⁺ ions, respectively, and n_{TFSA} is the solvation number of TFSA anions around Li⁺ ions, we obtain the following equation: $I_f/c_T = -n_{TFSA}J_f(c_{Li}/c_T) + J_f$. Plots of I_f/c_T against c_{Li}/c_T yield a straight line with a slope $\alpha = -n_{TFSA}J_f$ and an intercept $\beta = J_f$, and the n_{TFSA} value is thus obtained from $n = -\alpha/\beta$. The resulting value was $n_{TFSA} = 2.3$.

Fig. S4. S(q)s obtained from HEXTS experiments (open circles) and MD simulations (solid lines) for the (a) $c_{Li} = 0$ M and (b) $c_{Li} = 1.0$ M LiTFSA/[C₂mIm][TFSA] solutions containing PEG. [C₂mIm][TFSA] : PEG = 10.7:1 (by mol).

Fig. S5. S(q) and G(r) functions obtained from (open circles) and MD simulations (solid lines) for 1.0 M LiTFSA/[C₂mIm][TFSA] solution.

Fig. S6. Atom-atom pair correlation functions $[g^{MD}_{Li-Opeg}(r) :$ solid line (left-axis)] for the O atoms of PEG around the Li ions, and their integrated profiles [N(r) : dashed lines (right-axis)] for 1.0 M LiTFSA/[C₂mIm][TFSA] solution containing PEG ([C₂mIm][TFSA]:PEG = 10.7:1 (by mol)).