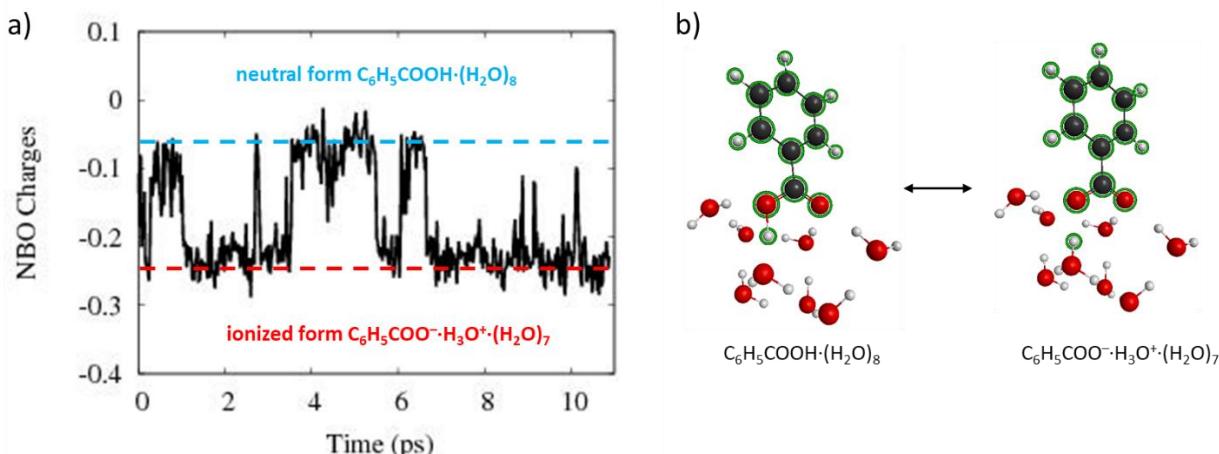
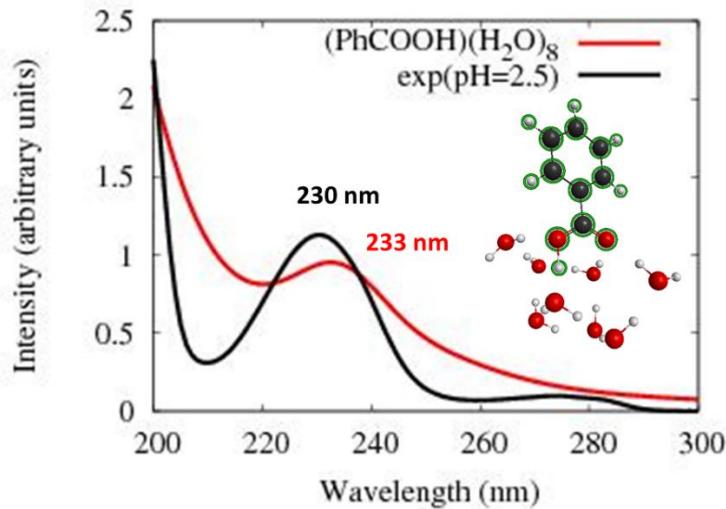


Absorption Spectra of Benzoic Acid in Water at Different pH and in the Presence of Salts: Insights from the Integration of Experimental Data and Theoretical Cluster Models


Natalia V. Karimova¹, Man Luo², Vicki H. Grassian^{2,3}, R. Benny Gerber^{1,4}

¹Department of Chemistry, University of California, Irvine, CA 92697, USA


²Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA

³Department of Nanoengineering and Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA

³Institute of Chemistry and Fritz Haber Research Center, Hebrew University of Jerusalem, Jerusalem 91904, Israel

Figure S1. Proton transfer process between benzoic acid and water molecules $C_6H_5COOH \cdot (H_2O)_8 \leftrightarrow C_6H_5COO^- \cdot H_3O^+ \cdot (H_2O)_7$. (a) NBO charges of the fragments $C_6H_5COOH/(C_6H_5COO \cdots H)$ stabilized by 8 water molecules; and (b) structures of $C_6H_5COOH \cdot (H_2O)_8 \leftrightarrow C_6H_5COO^- \cdot H_3O^+ \cdot (H_2O)_7$.

Figure S2. Comparison of the theoretical and experimental spectral data. Theoretical spectrum presented here is an average spectrum of all structures along AIMD trajectories. Optical absorption spectra of $C_6H_5COOH \cdot (H_2O)_8$ versus the experimental data at pH 2.5. Method B3LYP/6-31+G*. Theory – red curve, experiment – black.

Table S1. Experimental (in water at pH 2.5) and theoretical optical absorption spectral data for benzoic acid (where the $\Delta(E_B - E_C)$ is the energy gap between the maximums of C- and B-bands).

Basis Set	Peak Maximum		$\Delta(E_B - E_C)$
	C-band	B-band	
ADC(3)			
6-31+G*	4.71 eV	5.73 eV	1.02 eV
6-311+G*	4.71 eV	5.69 eV	0.98 eV
6-311++G**	4.70 eV	5.69 eV	0.99 eV
ADC(2)			
6-31+G*	4.98 eV	5.91 eV	0.93 eV
6-311+G*	4.96 eV	5.85 eV	0.89 eV
6-311++G**	4.95 eV	5.84 eV	0.89 eV
B3LYP			
6-31+G*	4.87 eV	5.38 eV	0.51 eV
6-311+G*	4.85 eV	5.37 eV	0.52 eV
6-311++G**	4.85 eV	5.36 eV	0.51 eV
aug-cc-pVTZ	4.85 eV	5.36 eV	0.51 eV
aug-cc-pVQZ	4.85 eV	5.35 eV	0.50 eV
Experiment	4.35 – 4.50 eV	5.40 eV	0.9 ÷ 1.05 eV

