Catalytic performance of Pd_n(n=1, 2, 3, 4 and 6) clusters supported on TiO_{2-V} for the formation of dimethyl oxalate via CO catalytic coupling reaction: A theoretical study

Lixia Ling^{a,b}, Yueting Cao^a, Min Han^a, Ping Liu^b, Riguang Zhang^c and Baojun Wang¹,

с

^a College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan

030024, P.R. China

^b State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P.R. China

^c Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, P.R. China

Fig. S1 Partial density of states (pDOS) for Pd₄ cluster on TiO_{2-V} with different multiplicities. Black line represents Pd₄ cluster supported on TiO_{2-V}, and red line represents free Pd₄ cluster. The suffix A, S and T represents different spin states, A shows that spin state is not fixed, S shows that spin state is singlet, and T shows that spin state is triplet.

¹ Corresponding author at: No. 79 West Yingze Street, Taiyuan 030024, China. Tel.: +86 351 6010898; Fax: +86 351 6041237; E-mail address: <u>wangbaojun@tyut.edu.cn</u> (B.J. Wang)

Fig. S2 The potential energy profile for the CO catalytic coupling reaction to DMO on Pd_2/TiO_2 .

V.

Fig. S3 The potential energy profile for the formation of DMO on Pd_3/TiO_{2-V} .

Fig. S4 The potential energy profile for the CO catalytic coupling reaction on $Pd_4/TiO_{2-V_1}^{-1}$

Fig. S5 The potential energy profile for the rate-determining step (COOCH₃+CO+OCH₃ \rightarrow COOCH₃+COOCH₃) on Pd₄/TiO_{2-V} with multiplicity of singlet, triplet and auto.

	$E_{\rm ads} \left({\rm Pd}_2 / {\rm TiO}_2 \text{-}_{\rm v} \right)$	$E_{\rm ads} \left({\rm Pd}_3 / {\rm TiO}_2 \text{-}_{\rm v} \right)$	$E_{\rm ads} \left({\rm Pd_4/TiO_2-v} \right)$	$E_{\rm ads} \left({\rm Pd_6/TiO_{2^-v}} \right)$
CO-OCH ₃	-345.2	-418.0	-441.2	-368.9
COOCH ₃	-250.3	-253.2	-259.9	-218.2
COOCH ₃ -CO	-367.3	-394.8	-404.4	-358.5
OCCOOCH ₃	-284.3	-207.6	-257.7	-259.0
OCCOOCH ₃ -OCH ₃	-558.4	-382.4	-432.4	-472.9
COOCH ₃ -CO-OCH ₃	-583.6	-639.3	-538.7	-602.9
COOCH ₃ -COOCH ₃	-530.5	-453.8	-410.1	-453.2
DMO	-34.0	-8.6	-72.2	-79.1

Table S1Adsorption energies $(kJ \cdot mol^{-1})$ of stable species on the Pd_2/TiO_{2^-v} , Pd_3/TiO_{2^-v} , Pd_4/TiO_{2^-v} and Pd_6/TiO_{2^-v} .

References:

[1] Y. T. Cao, L. X. Ling, H. Lin, M. H. Fan, P. Liu, R. G. Zhang and B. J. Wang, Comput. Mater. Sci., 2019, 159, 1-11.