### Supplementary Information for

# Impact of Intrinsic Framework Flexibility for Selective Adsorption of Sarin in

## Non-Aqueous Solvents using Metal-Organic Frameworks

Jongwoo Park<sup>1</sup>, Mayank Agrawal<sup>1</sup>,

Dorina F. Sava Gallis<sup>2</sup>, Jacob A. Harvey<sup>3</sup>, Jeffery A. Greathouse<sup>3</sup>, and David S. Sholl<sup>1\*</sup>

<sup>1</sup> School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA

<sup>2</sup> Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, NM 87185 USA

<sup>3</sup> Geochemistry Department, Sandia National Laboratories, Albuquerque, NM 87185 USA

\* Corresponding author. E-mail: david.sholl@chbe.gatech.edu.

## Table of Contents

**S1.** MOF Material Set

- S2. Adsorption Conditions for Solvents and Mixtures
- **S3.** Adsorption Selectivity in Rigid and Intrinsically Flexible MOFs

**S4.** Effect of MOF Properties on Quantitative Predictions of Adsorption Selectivity

**S5.** Molecular Modeling Details

**S6.** Numerical Data for Analysis

## References

#### **S1. MOF Material Set**

Table S1 curates a list of 23 MOFs chosen via MOF selection criteria illustrated in Fig. 1 in the main text.

**Table S1.** List of 23 MOFs chosen via MOF selection criteria. MOFs are listed with CSD reference codes reported in the CoRE MOF database<sup>1</sup>, except UiO-66- $CF_3^2$ , in alphabetical order. The physical properties of MOFs are adapted from the CoRE MOF database and calculated for UiO-66- $CF_3$  in this work.

| MOFs                   | Metal Type | <i>V</i> <sub>P</sub> (cm <sup>3</sup> /g) | $SA_{\rm acc}$ (m <sup>2</sup> /g) | LCD (Å) | PLD (Å) |
|------------------------|------------|--------------------------------------------|------------------------------------|---------|---------|
| AMAFOK                 | Cu         | 0.30                                       | 513.32                             | 6.60    | 5.66    |
| BARZAW                 | Zn         | 0.26                                       | 337.15                             | 7.74    | 2.56    |
| BZRZOK                 | Cu         | 0.28                                       | 340.18                             | 7.66    | 2.74    |
| COMDOY                 | Ga         | 0.48                                       | 971.33                             | 6.12    | 5.54    |
| EGELUY01               | Al         | 0.67                                       | 1555.22                            | 7.46    | 7.05    |
| EHALOP                 | Al         | 0.65                                       | 1632.09                            | 7.57    | 7.12    |
| HAFQOW                 | Al         | 0.65                                       | 1593.41                            | 7.39    | 6.93    |
| KEDQAN                 | Zn         | 0.39                                       | 551.92                             | 6.47    | 4.70    |
| OFORUX                 | Cd, Cu     | 0.26                                       | 264.75                             | 5.54    | 5.06    |
| ONIXOZ                 | Cu         | 0.74                                       | 1971.77                            | 9.94    | 9.19    |
| OVICUS                 | Zn         | 0.29                                       | 409.62                             | 5.88    | 5.25    |
| QONQEQ                 | Al         | 0.67                                       | 1519.12                            | 7.41    | 7.01    |
| RAZYIC                 | Cu         | 0.43                                       | 1033.43                            | 7.88    | 6.21    |
| SABVOH                 | Al         | 0.59                                       | 1333.73                            | 6.27    | 5.98    |
| SABVOH01               | Al         | 0.59                                       | 1377.25                            | 6.49    | 6.20    |
| SABVUN                 | Al         | 0.61                                       | 1439.47                            | 7.02    | 6.76    |
| UiO-66-CF <sub>3</sub> | Zn         | 0.36                                       | 554.21                             | 7.20    | 3.20    |
| UTEWOG                 | Ni         | 0.95                                       | 1702.39                            | 14.60   | 9.55    |
| UTEXAT                 | Zn         | 0.61                                       | 1068.81                            | 6.27    | 4.01    |
| UTEXIB                 | Со         | 0.60                                       | 1082.64                            | 6.30    | 3.96    |
| WAYMIU                 | Al         | 0.60                                       | 1412.09                            | 7.35    | 6.91    |
| WAYMOA                 | Al         | 0.65                                       | 1471.49                            | 7.08    | 6.89    |
| XUNJEW                 | Zn         | 0.40                                       | 778.07                             | 7.72    | 4.21    |

\* Abbreviations stand for  $V_{\rm P}$ : pore volume;  $SA_{\rm acc}$ : accessible surface area; LCD: largest cavity diameter; and PLD: pore limiting diameter.

#### S2. Adsorption Conditions for Solvents and Mixtures

Table S2 summarizes Henry constants ( $K_{\rm H}$ ) computed via a Widom particle insertion method<sup>3</sup> for sarin, soman, and H<sub>2</sub>O in 23 MOFs at 298 K as a part of the material selection criteria.  $K_{\rm H}$  calculated for non-aqueous solvents of MeOH and IPA at 298 K are also summarized.

| MOFs                   | <b>K</b> H,sarin | KH,soman | Кн,н20   | <i>К</i> н,меОН | <i>К</i> н,іра |
|------------------------|------------------|----------|----------|-----------------|----------------|
| AMAFOK                 | 1.60E-01         | 1.75E+01 | 3.90E-06 | 5.31E-08        | 1.27E-08       |
| BARZAW                 | 4.47E-01         | 2.06E-01 | 1.55E-06 | 4.43E-08        | 1.06E-08       |
| BZRZOK                 | 3.75E-01         | 1.02E-03 | 2.06E-06 | 4.61E-08        | 1.10E-08       |
| COMDOY                 | 6.10E-02         | 2.52E+02 | 5.88E-06 | 6.28E-08        | 1.50E-08       |
| EGELUY01               | 6.47E-03         | 4.73E+01 | 7.45E-06 | 1.75E-07        | 4.18E-08       |
| EHALOP                 | 5.12E-03         | 5.04E+01 | 8.36E-06 | 1.76E-07        | 4.19E-08       |
| HAFQOW                 | 5.78E-03         | 4.29E+02 | 8.11E-06 | 1.74E-07        | 4.17E-08       |
| KEDQAN                 | 6.76E-02         | 8.94E-03 | 4.41E-06 | 5.06E-08        | 1.21E-08       |
| OFORUX                 | 1.48E-01         | 2.37E-03 | 2.11E-06 | 2.68E-08        | 6.41E-09       |
| ONIXOZ                 | 2.99E-03         | 1.18E-03 | 9.09E-06 | 9.29E-08        | 2.22E-08       |
| OVICUS                 | 6.34E-01         | 1.83E-01 | 8.57E-06 | 5.59E-08        | 1.34E-08       |
| QONQEQ                 | 6.06E-03         | 2.62E+01 | 6.88E-06 | 1.75E-07        | 4.18E-08       |
| RAZYIC                 | 1.20E-02         | 5.62E+01 | 9.39E-06 | 6.88E-08        | 1.64E-08       |
| SABVOH                 | 7.91E-02         | 2.47E+03 | 6.67E-06 | 1.65E-07        | 3.94E-08       |
| SABVOH01               | 1.14E-01         | 2.60E+02 | 6.91E-06 | 1.64E-07        | 3.92E-08       |
| SABVUN                 | 2.40E-02         | 1.53E+02 | 6.92E-06 | 1.69E-07        | 4.03E-08       |
| UiO-66-CF <sub>3</sub> | 9.49E-03         | 1.20E-02 | 2.03E-06 | 3.74E-07        | 1.90E-07       |
| UTEWOG                 | 4.21E-02         | 7.69E+00 | 8.90E-06 | 1.05E-07        | 2.52E-08       |
| UTEXAT                 | 4.98E-03         | 1.54E-01 | 8.36E-06 | 7.20E-08        | 1.72E-08       |
| UTEXIB                 | 5.45E-03         | 5.30E+02 | 8.32E-06 | 7.90E-08        | 1.89E-08       |
| WAYMIU                 | 2.14E-02         | 2.99E+03 | 7.62E-06 | 1.69E-07        | 4.03E-08       |
| WAYMOA                 | 9.25E-03         | 9.69E+01 | 6.29E-06 | 1.73E-07        | 4.13E-08       |
| XUNJEW                 | 2.31E-03         | 3.22E+00 | 3.53E-06 | 5.61E-08        | 1.34E-08       |

**Table S2.** Henry constants ( $K_{\rm H}$ ) computed for CWAs of sarin, soman, and solvents of H<sub>2</sub>O, MeOH, IPA in 23 MOFs at 298 K.

For the bulk mixture adsorption condition, the partial pressure of each solvent was set to represent MOFs being exposed to liquid solvents. It is useful to understand whether the pores of the MOFs would be filled by solvent molecules under these conditions. We examined this by performing single component GCMC simulations of each solvent in the rigid MOF structure. Fig. S1 shows the resulting adsorption loading from GCMC at  $P^{0}_{solvent}$  as well as a simple approximate of the saturation loading of each solvent ( $N_{sat,approx}$ ) as calculated with Eq. (S1) using the room temperature liquid density of each solvent ( $\rho_{liq,solvent}$ )<sup>4</sup>. It is clear that under these conditions the pore of each MOF are essentially completely filled with solvent molecules.



$$N_{sat,approx} \approx V_P \cdot \rho_{liq,solvent} \cdot \frac{1}{_{MW_{solvent}}}$$
 (S1)

**Fig. S1.** Comparison of solvent loadings estimated via single component GCMC simulations at  $P = P^{0}_{\text{solvent}}$  and  $3 \cdot P^{0}_{\text{solvent}}^{5}$  and  $N_{sat,approx}$  for (a) H<sub>2</sub>O, (b) MeOH, and (c) IPA. GCMC at  $P = P^{0}_{\text{solvent}}$  is in good agreement with  $N_{sat,approx}$ .

#### **S3.** Adsorption Selectivity in Rigid and Intrinsically Flexible MOFs

Fig. S2 shows the loadings of adsorbing molecules and the resulting sarin adsorption selectivity in a representative MOF (CSD reference code BARZAW) for 10 distinct MD snapshots. This material showed the maximum deviation in  $S_{Flexible}/S_{Rigid}$  for sarin-containing binary mixtures we examined. The variation in the observed properties between different flexible snapshots is small, suggesting that averaging over 10 independent snapshots is adequate to give converged results.



**Fig. S2.** (a) Adsorption loadings for sarin and  $H_2O(N_{Flexible})$  and (b) adsorption selectivity for sarin  $(S_{Flexible})$  predicted by the flexible snapshot method in different snapshots for a sarin/ $H_2O$  mixture in BARZAW. Adsorption conditions for simulation are as described in the main text. Lines indicate the corresponding adsorption properties predicted by using a rigid structure to guide comparisons.

Fig. S3 shows adsorption selectivity calculations at 298 K at fixed  $P/P^{0}_{sarin} = 0.25$ , and their ratio to allow direct comparisons between two approximations (reproduced from Fig. 3, Fig. 4, and Fig. 5 in the main text). The conclusions of what types of mixture and MOFs could give higher sarin adsorption selectivity, i.e. sarin/H<sub>2</sub>O vs. sarin/MeOH, can be similarly drawn between two approximations, though their numerical deviation is nontrivial.



**Fig. S3.** Adsorption selectivities for sarin at 298 K in 23 MOFs (a) approximated as rigid ( $S_{Rigid}$ ) and (b) allowed to have intrinsic flexibility ( $S_{Flexible}$ ) for each molecular mixture. (c) Ratio of  $S_{Flexible}$  to  $S_{Rigid}$  in 23 MOFs for each molecular mixture. A green dashed line shows  $S_{Flexible}/S_{Rigid} = 1$  indicating no effect of intrinsic flexibility on adsorption modeling.

Fig. S4a compares the adsorption selectivities for sarin in intrinsically flexible MOFs using realistic polar solvents and the unphysical nonpolar solvents. When solvent molecules were assumed to be nonpolar, the sarin selectivity was substantially decreased in each mixture. Changing from the physical models to unphysical models of solvents made only small differences in the selectivity prediction in rigid MOFs (data not shown). The decreasing trend of adsorption selectivity in the models with nonpolar solvents is associated with a decrease in sarin uptake,  $N_{\text{sarin,Flexible}}$ , (Fig. S4b) while the uptakes for solvents,  $N_{\text{solvents,Flexible}}$ , are largely unchanged (inset of Fig. S4b).



**Fig. S4.** (a) Parity plot of adsorption selectivity of intrinsically flexible MOFs using polar solvents (horizontal axis) and nonpolar solvents (vertical axis). (b) Parity plot of adsorption amounts of sarin in intrinsically flexible MOFs using polar solvents (horizontal axis) and nonpolar solvents (vertical axis). The inset figure shows adsorption amounts of solvents with identical axes information.

#### S4. Effect of MOF Properties on Quantitative Predictions of Adsorption Selectivity

Fig. S5a compares LCD and PLD in rigid MOFs against those in flexible MOFs. Pore sizes in flexible MOFs were averaged over those from each MD snapshot. There were only marginal structural changes in MOFs by including intrinsic flexibility ( $\Delta V = 0$ ).

Fig. S5b and Fig. S5c show the ratio of adsorption selectivity in rigid and flexible MOFs as a function of LCD of each MOF using polar and nonpolar solvent molecules, respectively. MOFs that have small LCDs are more affected by intrinsic flexibility. However, we find insufficient correlation considering LCDs to identify the underlying reasons for the sensitivity of including flexibility as a function of molecular mixtures.



**Fig. S5.** (a) Parity plot of pore sizes, i.e. LCD and PLD, of 23 MOFs calculated in rigid approximation (horizontal axis) and in intrinsically flexible approximation (vertical axis). Error bars for Pore Size<sub>*Flexible*</sub> show variation over ten distinct MD snapshots.  $S_{Flexible}/S_{Rigid}$  as a function of LCD with simulations of using (b) realistic polar solvents and (c) unphysical nonpolar (np) solvents. LCD in (b) and (c) are that for rigid MOFs.

#### **S5.** Molecular Modeling Details

For GCMC simulations<sup>6,7</sup>, truncated potentials with tail corrections are applied where Lennard-Jones interactions are truncated at 12 Å. Simulation boxes are expanded to at least 26 Å along x, y, and z dimensions. GCMC simulations included 5,000 initialization cycles followed by 50,000 production cycles for which initial tests indicated good convergence. Henry constants were computed using 200,000 production cycles while including an identical Widom probability.

Pore volumes of computation-ready MOF structures were calculated from the void fractions of each structure using a Widom particle insertion method with a He probe molecule ( $\varepsilon/k_B = 10.9$  K,  $\sigma = 2.64$  Å) at 298 K.<sup>7</sup> Accessible surface areas were calculated by using N<sub>2</sub> as probe molecule with overlap distance criteria set to a size parameter  $\sigma$  of 3.31 Å.<sup>7</sup> Largest cavity diameters and pore limiting diameters were calculated with Zeo++<sup>8,9</sup> applying the high-accuracy setting with a N<sub>2</sub> probe molecule using a radius of 1.86 Å.<sup>8</sup>

For binary GCMC simulations using "unphysical" nonpolar solvent molecules, we omitted Coulombic adsorbate/adsorbate interactions<sup>10</sup> by removing atomic point charges for solvent molecules. Point charges were retained on sarin in these calculations.

Table S3 summarizes two molecular descriptors for the solvents examined in this work. It shows that molecular mixtures consist of adsorbates of different sizes and polarities.

**Table S3.** Molecular descriptors for the solvents. Kinetic diameter<sup>11</sup> and polarity index<sup>12,13</sup> of  $H_2O$ , MeOH, and IPA are listed. Polarity index is a relative measure of the degree of interaction of the solvent with various polar test solutes.

|                         | H <sub>2</sub> O | MeOH | IPA |
|-------------------------|------------------|------|-----|
| Kinetic diameter, d (Å) | 2.6              | 4.3  | 4.7 |
| Polarity index          | 10.2             | 5.1  | 3.9 |

\* Sarin<sup>14</sup> has a molecular shape of ~ 5 Å x ~ 12 Å.

#### S6. Numerical Data for Analysis

**Table S4.** Numerical data in Fig. 3, Fig. 4, and Fig. 5. Adsorption selectivities for sarin over solvents predicted in rigid MOFs ( $S_{Rigid}$ ) and intrinsically flexible MOFs ( $S_{Flexible}$ ), and their ratio ( $S_{Flexible}/S_{Rigid}$ ): sarin/H<sub>2</sub>O mixture.

| MOFs                   | SRigid | SFlexible | $S_{Flexible}/S_{Rigid}$ |
|------------------------|--------|-----------|--------------------------|
| AMAFOK                 | 5.16   | 4.66      | 0.90                     |
| BARZAW                 | 5.10   | 35.82     | 7.02                     |
| BZRZOK                 | 5.05   | 32.36     | 6.40                     |
| COMDOY                 | 3.81   | 13.14     | 3.45                     |
| EGELUY01               | 4.19   | 28.07     | 6.69                     |
| EHALOP                 | 7.99   | 25.46     | 3.19                     |
| HAFQOW                 | 9.36   | 24.56     | 2.62                     |
| KEDQAN                 | 5.52   | 21.40     | 3.88                     |
| OFORUX                 | 4.18   | 6.04      | 1.44                     |
| ONIXOZ                 | 9.10   | 19.88     | 2.19                     |
| OVICUS                 | 7.72   | 12.56     | 1.63                     |
| QONQEQ                 | 8.36   | 26.69     | 3.19                     |
| RAZYIC                 | 8.80   | 25.29     | 2.88                     |
| SABVOH                 | 4.85   | 23.45     | 4.84                     |
| SABVOH01               | 6.74   | 20.32     | 3.03                     |
| SABVUN                 | 5.48   | 22.16     | 4.04                     |
| UiO-66-CF <sub>3</sub> | 33.62  | 11.52     | 0.34                     |
| UTEWOG                 | 12.97  | 26.57     | 2.05                     |
| UTEXAT                 | 5.59   | 22.39     | 4.01                     |
| UTEXIB                 | 7.66   | 18.99     | 2.48                     |
| WAYMIU                 | 6.95   | 23.62     | 3.40                     |
| WAYMOA                 | 7.23   | 23.94     | 3.31                     |
| XUNJEW                 | 6.65   | 6.93      | 1.04                     |

| MOFs                   | SRigid | SFlexible | S <sub>Flexible</sub> /S <sub>Rigid</sub> |
|------------------------|--------|-----------|-------------------------------------------|
| AMAFOK                 | 28.06  | 23.41     | 0.83                                      |
| BARZAW                 | 26.99  | 54.44     | 2.02                                      |
| BZRZOK                 | 23.44  | 37.51     | 1.60                                      |
| COMDOY                 | 39.83  | 22.25     | 0.56                                      |
| EGELUY01               | 23.02  | 28.86     | 1.25                                      |
| EHALOP                 | 12.75  | 32.71     | 2.56                                      |
| HAFQOW                 | 31.04  | 33.03     | 1.06                                      |
| KEDQAN                 | 14.78  | 35.03     | 2.37                                      |
| OFORUX                 | 21.99  | 15.38     | 0.70                                      |
| ONIXOZ                 | 26.99  | 33.38     | 1.24                                      |
| OVICUS                 | 19.67  | 21.92     | 1.11                                      |
| QONQEQ                 | 11.40  | 44.77     | 3.93                                      |
| RAZYIC                 | 22.09  | 28.11     | 1.27                                      |
| SABVOH                 | 11.86  | 41.04     | 3.46                                      |
| SABVOH01               | 10.81  | 32.46     | 3.00                                      |
| SABVUN                 | 27.71  | 38.20     | 1.38                                      |
| UiO-66-CF <sub>3</sub> | 14.04  | 24.26     | 1.73                                      |
| UTEWOG                 | 29.37  | 41.82     | 1.42                                      |
| UTEXAT                 | 20.30  | 22.89     | 1.13                                      |
| UTEXIB                 | 12.48  | 24.89     | 1.99                                      |
| WAYMIU                 | 42.12  | 45.23     | 1.07                                      |
| WAYMOA                 | 22.83  | 39.33     | 1.72                                      |
| XUNJEW                 | 22.20  | 21.66     | 0.98                                      |

Table S4. Continued: sarin/MeOH mixture.

| MOFs                   | SRigid | SFlexible | S <sub>Flexible</sub> /S <sub>Rigid</sub> |
|------------------------|--------|-----------|-------------------------------------------|
| AMAFOK                 | 16.26  | 9.61      | 0.59                                      |
| BARZAW                 | 13.36  | 37.70     | 2.82                                      |
| BZRZOK                 | 19.70  | 33.66     | 1.71                                      |
| COMDOY                 | 11.32  | 15.34     | 1.36                                      |
| EGELUY01               | 15.54  | 29.30     | 1.89                                      |
| EHALOP                 | 18.29  | 33.06     | 1.81                                      |
| HAFQOW                 | 18.47  | 24.67     | 1.34                                      |
| KEDQAN                 | 19.74  | 28.53     | 1.45                                      |
| OFORUX                 | 17.83  | 9.09      | 0.51                                      |
| ONIXOZ                 | 17.92  | 26.38     | 1.47                                      |
| OVICUS                 | 19.08  | 15.60     | 0.82                                      |
| QONQEQ                 | 8.84   | 28.51     | 3.23                                      |
| RAZYIC                 | 14.76  | 25.17     | 1.70                                      |
| SABVOH                 | 16.72  | 42.49     | 2.54                                      |
| SABVOH01               | 20.01  | 35.40     | 1.77                                      |
| SABVUN                 | 17.42  | 27.13     | 1.56                                      |
| UiO-66-CF <sub>3</sub> | 8.61   | 13.53     | 1.57                                      |
| UTEWOG                 | 14.17  | 36.17     | 2.55                                      |
| UTEXAT                 | 9.28   | 23.70     | 2.55                                      |
| UTEXIB                 | 8.39   | 20.92     | 2.49                                      |
| WAYMIU                 | 15.32  | 30.21     | 1.97                                      |
| WAYMOA                 | 15.50  | 33.84     | 2.18                                      |
| XUNJEW                 | 13.87  | 10.55     | 0.76                                      |

 Table S4. Continued: sarin/IPA mixture.

| MOFs                   | SRigid | SFlexible | S <sub>Flexible</sub> /S <sub>Rigid</sub> |
|------------------------|--------|-----------|-------------------------------------------|
| AMAFOK                 | 4.64   | 3.61      | 0.78                                      |
| BARZAW                 | 5.13   | 10.91     | 2.12                                      |
| BZRZOK                 | 5.29   | 10.64     | 2.01                                      |
| COMDOY                 | 3.71   | 8.11      | 2.19                                      |
| EGELUY01               | 4.42   | 8.10      | 1.83                                      |
| EHALOP                 | 8.25   | 13.64     | 1.65                                      |
| HAFQOW                 | 10.74  | 17.51     | 1.63                                      |
| KEDQAN                 | 5.30   | 12.41     | 2.34                                      |
| OFORUX                 | 4.10   | 6.02      | 1.47                                      |
| ONIXOZ                 | 9.98   | 11.82     | 1.18                                      |
| OVICUS                 | 6.97   | 12.61     | 1.81                                      |
| QONQEQ                 | 8.07   | 13.74     | 1.70                                      |
| RAZYIC                 | 9.95   | 16.73     | 1.68                                      |
| SABVOH                 | 5.05   | 14.04     | 2.78                                      |
| SABVOH01               | 7.37   | 15.72     | 2.13                                      |
| SABVUN                 | 5.57   | 13.61     | 2.45                                      |
| UiO-66-CF <sub>3</sub> | 27.62  | 10.53     | 0.38                                      |
| UTEWOG                 | 13.21  | 14.72     | 1.11                                      |
| UTEXAT                 | 6.06   | 13.40     | 2.21                                      |
| UTEXIB                 | 6.87   | 8.99      | 1.31                                      |
| WAYMIU                 | 7.18   | 12.25     | 1.70                                      |
| WAYMOA                 | 8.04   | 13.21     | 1.64                                      |
| XUNJEW                 | 6.02   | 6.93      | 1.15                                      |

**Table S5.** Numerical data in Fig. 6 and Fig. 7. Adsorption selectivities for sarin over solvents in rigid MOFs ( $S_{Rigid}$ ) and intrinsically flexible MOFs ( $S_{Flexible}$ ), and their ratio ( $S_{Flexible}/S_{Rigid}$ ) calculated by using unphysical nonpolar (np) solvents: sarin/H<sub>2</sub>O(np) mixture.

| MOFs                   | SRigid | SFlexible | S <sub>Flexible</sub> /S <sub>Rigid</sub> |
|------------------------|--------|-----------|-------------------------------------------|
| AMAFOK                 | 29.11  | 20.40     | 0.70                                      |
| BARZAW                 | 25.20  | 34.41     | 1.37                                      |
| BZRZOK                 | 24.09  | 27.51     | 1.14                                      |
| COMDOY                 | 36.28  | 20.25     | 0.56                                      |
| EGELUY01               | 23.72  | 25.86     | 1.09                                      |
| EHALOP                 | 13.48  | 17.71     | 1.31                                      |
| HAFQOW                 | 31.70  | 33.03     | 1.04                                      |
| KEDQAN                 | 14.02  | 25.10     | 1.79                                      |
| OFORUX                 | 19.49  | 13.38     | 0.69                                      |
| ONIXOZ                 | 26.02  | 24.83     | 0.95                                      |
| OVICUS                 | 20.17  | 18.91     | 0.94                                      |
| QONQEQ                 | 10.97  | 17.58     | 1.60                                      |
| RAZYIC                 | 22.90  | 21.17     | 0.92                                      |
| SABVOH                 | 12.08  | 21.04     | 1.74                                      |
| SABVOH01               | 11.95  | 18.46     | 1.55                                      |
| SABVUN                 | 28.52  | 33.23     | 1.16                                      |
| UiO-66-CF <sub>3</sub> | 14.84  | 15.26     | 1.03                                      |
| UTEWOG                 | 28.90  | 30.80     | 1.07                                      |
| UTEXAT                 | 21.03  | 22.32     | 1.06                                      |
| UTEXIB                 | 11.88  | 14.94     | 1.26                                      |
| WAYMIU                 | 41.67  | 39.92     | 0.96                                      |
| WAYMOA                 | 21.08  | 29.68     | 1.41                                      |
| XUNJEW                 | 22.92  | 19.66     | 0.86                                      |

 Table S5. Continued: sarin/MeOH(np) mixture.

| MOFs                   | SRigid | SFlexible | S <sub>Flexible</sub> /S <sub>Rigid</sub> |
|------------------------|--------|-----------|-------------------------------------------|
| AMAFOK                 | 15.77  | 10.62     | 0.67                                      |
| BARZAW                 | 14.94  | 17.72     | 1.19                                      |
| BZRZOK                 | 20.92  | 23.31     | 1.11                                      |
| COMDOY                 | 10.73  | 13.13     | 1.22                                      |
| EGELUY01               | 16.79  | 21.30     | 1.27                                      |
| EHALOP                 | 19.94  | 23.56     | 1.18                                      |
| HAFQOW                 | 18.91  | 19.05     | 1.01                                      |
| KEDQAN                 | 20.17  | 18.03     | 0.89                                      |
| OFORUX                 | 14.26  | 8.99      | 0.63                                      |
| ONIXOZ                 | 19.72  | 22.84     | 1.16                                      |
| OVICUS                 | 18.77  | 15.02     | 0.80                                      |
| QONQEQ                 | 9.40   | 10.25     | 1.09                                      |
| RAZYIC                 | 14.90  | 16.82     | 1.13                                      |
| SABVOH                 | 17.22  | 27.92     | 1.62                                      |
| SABVOH01               | 20.86  | 25.47     | 1.22                                      |
| SABVUN                 | 18.56  | 23.33     | 1.26                                      |
| UiO-66-CF <sub>3</sub> | 8.80   | 10.85     | 1.23                                      |
| UTEWOG                 | 13.77  | 15.20     | 1.10                                      |
| UTEXAT                 | 8.81   | 10.79     | 1.22                                      |
| UTEXIB                 | 7.93   | 8.99      | 1.13                                      |
| WAYMIU                 | 14.18  | 17.22     | 1.21                                      |
| WAYMOA                 | 15.74  | 23.76     | 1.51                                      |
| XUNJEW                 | 14.05  | 11.29     | 0.80                                      |

Table S5. Continued: sarin/IPA(np) mixture.

#### References

- Y. G. Chung, J. S. Camp, M. Haranczyk, B. J. Sikora, W. Bury, V. Krungleviciute, T. Yildirim,
   O. K. Farha, D. S. Sholl and R. Q. Snurr, *Chem. Mater.*, 2014, 26, 6185-6192.
- 2 H. Demir, K. S. Walton and D. S. Sholl, J. Phys. Chem. C, 2017, 121, 20396-20406.
- 3 B. Widom, J. Chem. Phys., 1963, **39**, 2808-2812.
- 4 B. S. Furniss, A. J. Hannaford, P. W. G. Smith and A. R. Tatchell, *Practical Organic Chemistry* (5<sup>th</sup> Edition), John Wiley & Sons Inc., New York, 1989.
- 5 D. Tang, G. Kupgan, C. M. Colina and D. S. Sholl, J. Phys. Chem. C, 2019, 123, 17884-17893.
- 6 D. Dubbeldam, S. Calero, D. E. Ellis and R. Q. Snurr, *Mol. Simul.*, 2016, 42, 81-101.
- 7 D. Dubbeldam, A. Torres-Knoop and K. S. Walton, *Mol. Simul.*, 2013, **39**, 1253-1292.
- 8 T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza and M. Haranczyk, *Micropor. Mesopor. Mat.*, 2012, **149**, 134-141.
- 9 M. Pinheiro, R. L. Martin, C. H. Rycroft and M. Haranczyk, *CrystEngComm*, 2013, 15, 7531-7538.
- 10 M. G. Martin and J. I. Siepmann, J. Phys. Chem. B, 1998, 102, 2569-2577.
- 11 M. E. van Leeuwen, *Fluid Phase Equilib.*, 1994, **99**, 1-18.
- 12 D. C. Harris, *Quantitative Chemical Analysis (9th Edition)*, Freeman, New York, 2015.
- 13 E. Katz, R. Eksteen, P. Schoenmakers and N. Miller, *Handbook of HPLC*, Marcel Dekker, New York, 1998.
- 14 R. T. Delfino, T. S. Ribeiro and J. D. Figueroa-Villar, J. Braz. Chem. Soc., 2009, 20, 407-428.