Electronic Supplementary Information for Physical Chemistry Chemical Physics

Theoretical Understanding of Electrochemical Reaction Barrier: A Kinetic Study of CO₂ Reduction Reaction on Copper Electrodes

Shu-Ting Gao^a, Shi-Qin Xiang^a, Jun-Lin Shi^a, Wei Zhang^{*b} and Liu-Bin Zhao^{*a}

^aDepartment of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China

^bChongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China

Corresponding Authors

*E-mail: andyzhangwei@163.com.

*E-mail: lbzhao@swu.edu.cn.

Supplementary Figures and Tables

1. Derivation of Activation Barrier Energy E_a of CPET process based on Marcus theory.

For a displaced oscillator model, free energy of transition state is expressed as

$$E_R = \frac{1}{2}kx^2 \rightarrow x^2 = \frac{2E_R}{k}$$

and

$$E_{P} = \frac{1}{2}k\left(x-q\right)^{2} + \Delta G$$

Where k is force constants of reactant systems and product systems, respectively; ΔG is reaction free energy; q is the reaction coordinates.

We defined $\lambda = \frac{1}{2}kq^2$, then

$$E_{\scriptscriptstyle R} = E_{\scriptscriptstyle P} = E_{\scriptscriptstyle a} = \frac{\lambda}{4} \left(1 + \frac{\Delta G}{\lambda}\right)^2$$

For a displaced-distorted oscillator model, free energy of transition state is expressed as

$$E_R = \frac{1}{2}k_R x^2 \rightarrow x^2 = \frac{2E_R}{k_R}$$

and

$$E_P = \frac{1}{2}k_P\left(x-q\right)^2 + \Delta G$$

Where k_R and k_P is force constants of reactant systems and product systems, respectively; ΔG is reaction free energy; q is the reaction coordinates.

We defined
$$\lambda_R = \frac{1}{2}k_R q^2$$
, $\lambda_P = \frac{1}{2}k_P q^2$,

Where λ_R is the total reorganization energy of reactant systems, λ_P is the total reorganization energy of product systems.

Finally,
$$E_a = \left(\frac{-\sqrt{\lambda_R} + \sqrt{\frac{\lambda_R}{\lambda_P} \left[\lambda_R + \Delta G(\frac{\lambda_R}{\lambda_P} - 1)\right]}}{(\frac{\lambda_R}{\lambda_P} - 1)}\right)^2$$
.

At
$$\Delta G = 0$$
, $E_a = \frac{\lambda_R \lambda_P}{(\sqrt{\lambda_R} + \sqrt{\lambda_P})^2}$

If $\lambda_R = \lambda_P$,

Then
$$E_a = \frac{\lambda_R}{4} = \frac{\lambda_P}{4} = \frac{\lambda}{4}$$
.

That is to say, the value of activation energy is determined by λ when reaction is spontaneous.

2. Correction of thermodynamic quantity G with the VASPKIT code.

Gibbs free energies were calculated from DFT total energies corrected by zero-point energy (ZPE), heat capacity (C_p), and entropy (TS).

$$G = E_{DFT} + E_{ZPE} + \int C_P dT - TS$$

The total electron energies E_{DFT} at 0 K were firstly calculated using the VASP program. Then, correction terms at 298.15 K were calculated by VASPKIT code. The internal energy of the system under 0 K is expressed:

$$U(0)=E_{DFT}+E_{ZPE}$$

For adsorbed molecules, we ignore PV contribution to translation. So H = U.

The enthalpy at temperature T is expressed:

$$H(T) = E_{DFT} + E_{ZPE} + \int C_{P} dT$$

Where $\int C_P dT$ is the enthalpy contribution and expressed as E_H in the VASPKIT program, then the Gibbs free energy at temperature T is

$$G = H - TS = E_{DFT} + E_{ZPE} + \int C_P dT - TS$$

For correcting the Gibbs free energy data, we needed additional calculations at the Γ point, and they were carried out in the VASPKIT code.

Species	Cu(211)		Cu(110)		Cu(100)		Cu(211)	
	structure	E _b	Structure	E _b	structure	E _b	structure	E _b
СООН		2.54		2.47		2.27		-1.99
СО		1.02		0.94		0.86		0.81
СНО		2.07		2.01		1.86		-1.59
СНОН		1.99		2.08		1.90		1.66
СН		5.56		5.70		6.13		5.34
CH ₂		-3.92		3.78		-3.79		-3.55
CH ₃		2.42	288 1997	-2.36		2.10		-2.04

Table S1. Calculated binding energy (in eV) and optimized structures of key adsorbates on the (111), (100), (110) and (211) crystal facets. The colors are Cu in orange, C in gray, O in red and H in white.

 $E_b = E_{total} - E_{substrate} - E_{molecule}$

where E_{total} is the total energy of the complete system (surface + adsorbates), $E_{substrate}$ is the energy of the substrate (i.e., slab only), and $E_{molecule}$ is the energy of a single molecule in the unit cell.

	Free molecule	Cu(211)	Cu(110)	Cu(100)	Cu(111)
Structure of COOH	131.683 02 01-01-02 1.207 1.216	1.270	1.270	1.267	118.38800
$d_{Cu-C}/Å$		1.934	1.937	1.943	1.950
$d_{Cu-O1}/Å$		2.033	2.051	2.068	2.123
$E_{b}^{\rm /} eV$		-2.54	-2.47	-2.28	-2.00
Structure of CO	1.143	1.178	1.177	1.158	1.186
$d_{Cu-C}/{ m \AA}$		1.960, 1.961	1.960, 1.959	1.842	2.045,2.045,2.046
$E_{b}^{\rm /} eV$		-1.02	-0.94	-0.86	-0.81
Structure of CHO	1.192	1.116	1.261	1.317	1.251
$d_{Cu-C}/Å$		1.919	1.922	2.024, 2.037	1.936
d _{Cu-O} /Å		2.060	2.048	2.139, 2.100	2.168
E_{b}^{\prime}/eV		-2.07	-2.01	-1.86	-1.59

Table S2. Calculated the bond lengths and bond angles of *COOH, *CO and *CHO on the (111), (100), (110) and (211)crystal facets are summarized. The colors are Cu in orange, C in gray, O in red and H in white.

Structures	Adsorbate	ZPE	$\int C_P \mathrm{d}T$	TS	$\int C_P \mathrm{d}T - TS$	$ZPE + \int C_P \mathrm{d}T - TS$
	*CO ₂ ^a	0.32	-	-	-0.14	0.18
	*COOH	0.60	0.10	0.21	-0.11	0.49
	*CO	0.17	0.08	0.15	-0.07	0.10
	*CHO	0.48	0.08	0.15	-0.07	0.41
Cu(211)	*CHOH	0.80	0.09	0.19	-0.10	0.70
	*CH	0.34	0.03	0.04	-0.01	0.33
	*CH ₂	0.59	0.06	0.09	-0.03	0.56
	*CH ₃	0.90	0.08	0.16	-0.08	0.82
	*CH ₄ ^a	1.19	-	-	-0.16	1.03
	*CO ₂ ^a	0.33	-	-	-0.14	0.19
	*COOH	0.61	0.10	0.20	-0.10	0.51
	*CO	0.17	0.08	0.17	-0.09	0.08
	*CHO	0.46	0.07	0.14	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.39
Cu(110)	*CHOH	0.77	0.09	0.18	-0.09	0.68
Cu(110)	*CH	0.32	0.04	0.06	-0.02	0.30
	*CH ₂	0.58	0.06	0.10	-0.04	0.54
	*CH ₃	0.90	0.08	0.16	-0.08	0.82
	*CH ₄ ^a	1.19	-	-	-0.16	1.03
	*CO ₂ ^a	0.31	-	-	-0.14	0.17
	*COOH	0.60	0.08	0.16	-0.08	0.52
	*CO	0.18	0.06	0.11	-0.05	0.13
	*CHO	0.43	0.08	0.14	-0.05 0.1	0.37
Cu(100)	*CHOH	0.77	0.09	0.17	-0.08	0.69
	*CH	0.34	0.03	0.04	-0.01	0.33
	*CH ₂	0.56	0.06	0.10	-0.04	0.52
	*CH ₃	0.90	0.06	0.10	-0.04	0.86
	*CH4 ^a	1.19	-	-	-0.16	1.03
	*CO ₂ ^a	0.31	-	-	-0.14	0.17
	*COOH	0.59	0.11	0.23	-0.12	0.47
	*CO	0.17	0.08	0.15	-0.07	0.10
	*CHO	0.45	0.08	0.17	-0.08	0.37
Cu(111)	*CHOH	0.75	0.10	0.19	-0.10	0.66
. /	*CH	0.34	0.03	0.05	-0.02	0.32
	*CH ₂	0.58	0.06	0.11	-0.05	0.53
	*CH ₃	0.91	0.07	0.12	-0.05	0.86
	*CH ₄ ^a	1.20	-	-		
^a Physical ads	sorption					

Table S3. The zero-point energy correction, enthalpy correction, and entropy correction for adsorbates on four different structures. All values are given in eV.

Species	Fugacity (Pa)	ZPE	$\int C_{P} \mathrm{d}T$	TS	$ZPE + \int C_P dT - TS$
CO ₂ (g)	101325	0.31	0.10	0.66	-0.26
$H_2(g)$	101325	0.27	0.09	0.40	-0.05
CH ₄ (g)	20467	1.19	0.10	0.62	0.68
$H_2O(l)$	3534	0.56	0.10	0.67	-0.01

Table S4. The zero-point energy correction, enthalpy correction, and entropy correction for free modules. All values are given in eV.

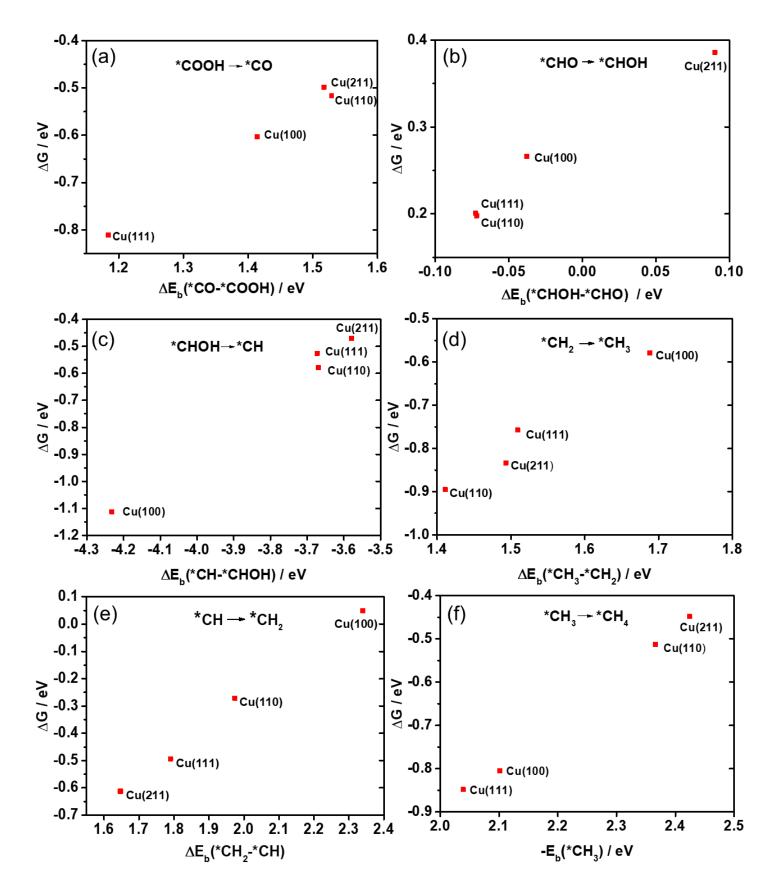


Fig. S1. The relationship between the Gibbs free energy change and the corresponding binding energy difference for (a)

*COOH \rightarrow *CO+H₂O, (b) *CHO \rightarrow *CHOH, (c) *CHOH \rightarrow *CH+H₂O, (d) *CH \rightarrow *CH₂, (e) *CH₂ \rightarrow *CH₃ and (f) *CH₃ \rightarrow *CH₄ on four Cu surfaces.

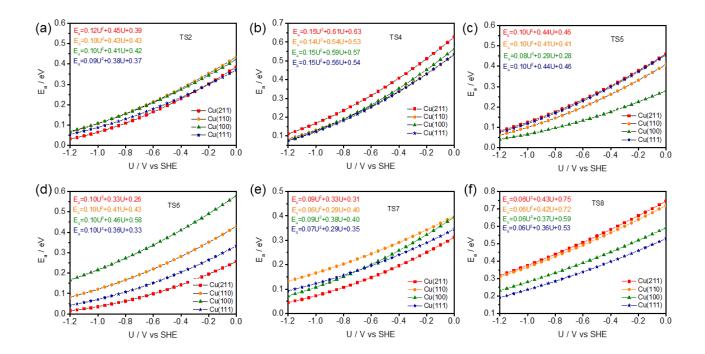


Fig. S2. Reaction barriers for (a) $COOH \rightarrow CO+H_2O$, (b) $CHO \rightarrow CHOH$, (c) $CHOH \rightarrow CH+H_2O$, (d) $CH \rightarrow CH_2$, (e) $CH_2 \rightarrow CH_3$ and (f) $CH_3 \rightarrow CH_4$ on different crystal facets as a function of applied electrode potential.

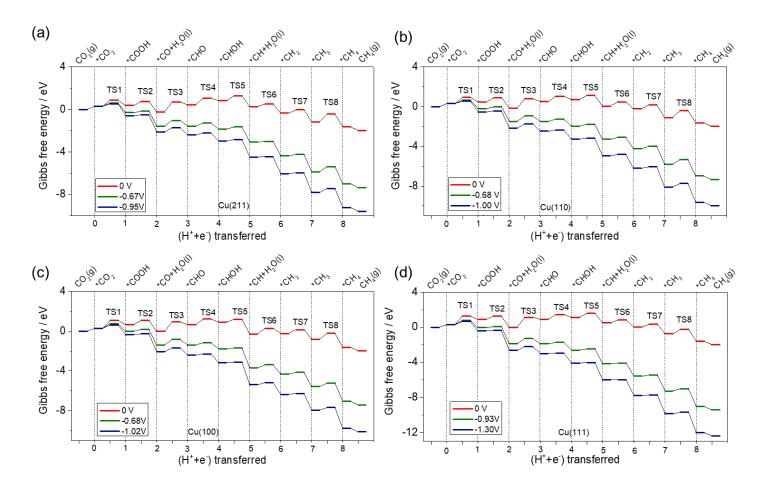


Fig. S3. Calculated Gibbs free energies of electroreduction of CO_2 as a function of the applied potential in pH = 0 solution on (a) Cu(211), (b) Cu(110), (c) Cu(100), (d) Cu(111) surfaces. The electrode potentials are referred to the standard hydrogen electrode.

Table S5. Calculated internal reorganization energy, solvent reorganization energy related to electron transfer, and solvent reorganization energy related to proton transfer for Electroreduction of CO_2 to CH_4 on four different structures. All values are given in eV.

Elementary Reaction	Facet	λ_R	$\lambda_{_P}$	$\lambda_{\!R}^i$	λ_P^i	$\lambda_{\!R}^{o,ET}$	$\lambda_P^{o,ET}$	$\lambda_{R}^{o,PT}$	$\lambda_P^{o,PT}$
$*CO_2+H^++e^- \rightarrow *COOH$	Cu(211)	1.81	2.71	0.56	1.53	1.20	1.14	0.05	0.04
	Cu(110)	1.86	2.58	0.61	1.40				
	Cu(100)	2.18	2.69	0.93	1.51				
	Cu(111)	2.45	2.89	1.20	1.71				
*COOH+H ⁺ +e ⁻	Cu(211)	3.37	2.23	2.24	1.17	1.14	1.06	0.00	0.00
\rightarrow *CO+H ₂ O	Cu(110)	3.39	2.53	2.26	1.47				
	Cu(100)	3.41	2.66	2.27	1.60				
	Cu(111)	3.46	2.82	2.32	1.76				
$*CO+H^++e^- \rightarrow *CHO$	Cu(211)	2.25	2.04	0.97	0.82	1.25	1.19	0.03	0.03
	Cu(110)	2.24	2.18	0.96	0.96				
	Cu(100)	2.48	2.06	1.20	0.83				
	Cu(111)	2.41	2.18	0.78	1.02				
*CHO+H ⁺ +e ⁻	Cu(211)	1.62	1.69	0.43	0.55	1.19	1.15	0.00	0.00
\rightarrow *CHOH	Cu(110)	1.65	1.81	0.46	0.66				
	Cu(100)	1.74	1.61	0.55	0.46				
	Cu(111)	1.73	1.71	0.54	0.56				
*CHOH+H ⁺ +e ⁻	Cu(211)	3.34	2.59	2.19	1.48	1.15	1.10	0.00	0.00
\rightarrow *CH+H ₂ O	Cu(110)	3.23	2.60	2.08	1.49				
	Cu(100)	2.83	3.15	1.68	2.05				
	Cu(111)	3.62	2.58	2.47	1.47				
$^{*}\mathrm{CH}^{+}\mathrm{H}^{+}\mathrm{+}\mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}$	Cu(211)	1.83	2.22	0.47	0.96	1.35	1.27	0.00	0.00
	Cu(110)	1.98	2.46	0.63	1.19				
	Cu(100)	1.89	2.66	0.54	1.39				
	Cu(111)	1.98	2.38	0.63	1.11				
$*CH_2+H^++e^- \rightarrow *CH_3$	Cu(211)	2.44	2.78	1.12	1.53	1.27	1.21	0.05	0.04
	Cu(110)	2.22	3.90	0.90	2.65				
	Cu(100)	2.50	2.68	1.18	1.43				
	Cu(111)	1.87	3.40	0.55	2.15				
$^{*}\mathrm{CH}_{3}\!\!+\!\!\mathrm{H}^{\!+}\!\!+\!\!e^{\!-}\!\!\rightarrow ^{*}\mathrm{CH}_{4}$	Cu(211)	3.69	3.94	2.48	2.57	1.21	1.37	0.00	0.00
	Cu(110)	3.56	4.07	2.35	2.71				
	Cu(100)	3.44	4.08	2.24	2.71				
	Cu(111)	3.17	3.94	1.96	2.58				

As seen from Table S5, the calculated reorganization energies of C1, C2, C5, and C8 are much larger than the other elementary reactions. The most important contribution of reorganization energies for these reactions arise

from the inner reorganization term. For C1 and C8 reactions, the reactant CO₂ and product CH₄ are physisorbed on copper surfaces while COOH and CH₃ are strongly chemisorbed on copper surfaces. The molecular geometry changes significantly from the equilibrium configuration of the reactant to the equilibrium configuration of the product, which leads to a large inner reorganization energy. Similarly, C2 and C5 reaction are dehydration reactions with cleavage of C-O bond. The large molecular geometry change during electrochemical reduction results to a great inner reorganization energy. Alternatively, the molecular geometry change is quite tiny for C3, C4, C6, and C7, which produces relative smaller inner reorganization energies.