1 Self-assembly of new O- and S-heterocycle-based protective layers

2 for copper in acid solution

- 3 Li Feng^a, Xiaolei Ren^b, Yangyang Feng^a, Bochuan Tan^a, Shengtao Zhang^{a*}, Wenpo Li^a, Jie Liu^c
- 4 ^a School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044,
- 5 China.
- 6 ^b College of environment and resources, chongqing technology and business university,
- 7 Chongqing 400067, China.
- 8 ° College of Chemistry and Chemical Engineering, Yantai 264005, PR China.

9 1. The characterization of target molecules

3,3'-(Furan-2-ylmethylene)bis(1H-indole) (FYBI): ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s,
2H), 7.38 (d, J = 8.0 Hz, 2H), 7.24 (s, 1H), 7.18 (d, J = 8.0 Hz, 2H), 7.07 (t, J = 8.0 Hz, 2H), 6.94
(t, J = 7.2 Hz, 2H), 6.65 (s, 2H), 6.19 (s, 1H), 5.95 (d, J = 2.8 Hz, 1H), 5.83 (s, 1H). ¹³C NMR
(101 MHz, CDCl₃) δ 156.1, 143.4, 133.8, 132.5, 130.5, 129.4, 127.1, 127.0, 126.7, 118.5, 120.1,
33.7.

3,3'-(thiophen-2-ylmethylene)bis(1H-indole) (TYBI): ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s,
2H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.16 (dd, *J* = 15.2, 7.2 Hz, 3H), 7.02 (t, *J* =
7.2 Hz, 2H), 6.91-6.90 (m, 2H), 6.81 (s, 2H), 6.15 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.8,
136.7, 127.0, 125.3, 123.3, 122.2, 120.0, 119.94, 119.88, 119.5, 111.3, 94.8, 35.6.

Fig. S3 The open circuit potential with various concentration and assemble time.

33 3. The equivalent circuit

42

Fig. S5 Values of polarization resistance (R_p) and current density (i_{corr}) at different times and 37

concentrations (Error bars represent mean \pm SD for n = 3, *p < 0.05).

4. Adsorption study 39

- The form of these isotherms is listed as followings (1)-(5): 40
- Temkin adsorption isotherm: $KC = exp[m](2a\theta)$ 41 (1)

Frumkin adsorption isotherm:
$$ln\left[\frac{\theta}{(1-\theta)C}\right] = lnK + 2a\theta$$
 (2)

43 Flory-Huggins adsorption isotherm:
$$ln\frac{\theta}{C} = xln(1-\theta) + ln^{\text{ind}}(xK_{ads})$$
(3)

44 EI-Awady adsorption isotherm:
$$ln\frac{\theta}{C} = xln(1-\theta) + \ln(xK_{ads})$$
(4)

$$\frac{C}{c} = \frac{1}{r} + c$$

45 Langmuir adsorption isotherm:
$$\theta K_{ads}$$
 (5)

Fig. S6 The various adsorption isotherms of FYBI and TYBI on copper surface.

50 5. XPS high-resolution spectra

Table 6 The relevant chemical state, binding energy and FWMH from high-resolution XPS
52 spectra.

Sample	Chemical	Binding	FWHM	Sample	Chemical	Binding	FWHM
	state	energy (eV)			state	energy (eV)	
FYBI SAMs			TYBI SAMs				
C1s	С-С/С-Н	284.57	1.0	C1s	С-С/С-Н	284.40	1.0
	C-N	285.35	1.0		C-S	284.98	1.0
	C-O	286.15	1.0		C-N	285.65	1.0
Cu2p	Cu(0)/Cu(I)	933.17	1.2	Cu2p	Cu(0)/Cu(I)	932.99	1.6
	Cu(II)	934.18	1.2				
N1s	N-H	399.39	0.9	N1s	N-H	398.82	0.9
	N-C	400.06	0.9		N-C	399.80	0.9
	N:Cu	400.70	0.9		N:Cu	400.50	0.9
Ols	C-O-C	531.75	2.0	S2p	S:Cu2p3/2	162.20	1.0
	CuO/Cu ₂ O	533.43	2.0		S:Cu2p1/2	163.30	1.0
					C-S-C2p3/2	164.25	1.0
					C-S-C2p1/2	165.35	1.0
					SO4 ²⁻	168.40	1.0