Supporting Information

Coupling of Two Curved Polyaromatic Radical-Anions:

Stabilization of Dimer by Counterions

Melisa Alkan, Andrey Yu. Rogachev*

Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA

To whom correspondence should be addressed: E-mail: <u>andrey.rogachev@gmail.com</u> and/or <u>andrey.rogachev@iit.edu</u> (A.Yu. Rogachev)

Table S1. Absolute energies for all systems under consideration at PBE0/cc-pVDZ(C,H,O)//def2-TZVP(Cs) level of theoryS2

Figure S1. Spin density distribution (isosurface level 0.0035 a.u.) in corannulene-based (a)and dibenzo[a,g]corannulene-based (b) solvent-separated ion pairs [{(P(CH_3)_4+}(PAH-)](PBE0/cc-pVTZ(C,H,O,P))S3

Table S1. Absolute energies for all systems under consideration at PBE0/cc-pVDZ(C,H,O)//def2-TZVP(Cs) level of theory.

System	Energy, a.u.
System	
$[(Cs^{+})_{2}(18C6)_{2}\{(C_{28}H_{14})_{2}^{2}-\}]$	-4033.072493646
$[(Cs^{+})_{2}(diglyme)_{4}\{(C_{28}H_{14})_{2}^{2-}\}]$	-4037.7913202669
$[(Cs^{+})_{2}\{(C_{28}H_{14})_{2}^{2-}\}]$	-2188.9726627062
$(C_{28}H_{14})_2^{2-}$	-2148.5853290382
$[(Cs^{+})(18C6)\{(C_{28}H_{14})^{-}\}]$	-2016.5281455409
$[(Cs^+)(diglyme)_2\{(C_{28}H_{14})^-\}]$	-2018.8869382208
$[(Cs^{+})\{(C_{28}H_{14})^{-}\}]$	-1094.4754275893
$(C_{28}H_{14})^{-}$	-1074.3185777516
$[(Cs^{+})_{2}(18C6)_{2}\{(C_{20}H_{10})_{2}^{2}\}]$	-3419.1124435815
$[(Cs^{+})_{2}(diglyme)_{4}\{(C_{20}H_{10})_{2}^{2-}\}]$	-3423.8296987797
$[(Cs^{+})_{2}\{(C_{20}H_{10})_{2}^{2-}\}]$	-1575.0211338753
$(C_{20}H_{10})_2^{2-}$	-1534.6153554856
$[(Cs^+)(18C6)\{(C_{20}H_{10})^-\}]$	-1709.5485860056
$[(Cs^+)(diglyme)_2\{(C_{20}H_{10})^-\}]$	-1711.9083483116
$[(Cs^{+})\{(C_{20}H_{10})^{-}\}]$	-787.5006656103
$(C_{20}H_{10})^{-}$	-767.3374308988
$[(Li^{+})_{2}\{(C_{20}H_{10})_{2}^{2}^{-}\}]$	-1550.0050909929
$[(\mathrm{Na}^{+})_{2}\{(\mathrm{C}_{20}\mathrm{H}_{10})_{2}^{2^{-}}\}]$	-1859.3783520144
$[(K^{+})_{2}\{(C_{20}H_{10})_{2}^{2}\}]$	-2734.5357712758
$[(Rb^{+})_{2}\{(C_{20}H_{10})_{2}^{2}\}]$	-1583.2171957478
$[(Li^{+})\{(C_{20}H_{10})^{-}\}]$	-774.9851710864
$[(Na^{+})\{(C_{20}H_{10})^{-}\}]$	-929.6761665696
$[(K^{+})\{(C_{20}H_{10})^{-}\}]$	-1367.2586915055
$[(Rb^{+})\{(C_{20}H_{10})^{-}\}]$	-791.6005293487
$[(Li^{+})_{2}\{(C_{28}H_{14})_{2}^{2}^{-}\}]$	-2164.0884941124
$[(\mathrm{Na}^{+})_{2}\{(\mathrm{C}_{28}\mathrm{H}_{14})_{2}^{2^{-}}\}]$	-2473.4625486566
$[(K^{+})_{2}\{(C_{28}H_{14})_{2}^{2}\cdot\}]$	-3348.6199771188

$[(\mathbf{Rb}^{+})_{2}\{(\mathbf{C}_{28}\mathbf{H}_{14})_{2}^{2}\}]$	-2197.3018439256
$[(Li^{+})\{(C_{28}H_{14})^{-}\}]$	-1082.0264214623
$[(Na^{+})\{(C_{28}H_{14})^{-}\}]$	-1236.7173763050
$[(K^{+})\{(C_{28}H_{14})^{-}\}]$	-1674.2998667380
$[(Rb^{+})\{(C_{28}H_{14})^{-}\}]$	-1098.6418419983
$[(Li^{+})_{2}(diglyme)_{4}\{(C_{20}H_{10})_{2}^{2}^{-}\}]$	-3399.4003788767
$[(Li^+)(diglyme)_2\{(C_{20}H_{10})_2^-\}]$	-1699.6975212547
$[(N(CH_3)_4^+)_2\{(C_{20}H_{10})_2^{2-}\}]$	-1963.2110231826
$[(N(CH_3)_4^+)\{(C_{20}H_{10})_2^-\}]$	-981.6023621402

Figure S1. Spin density distribution (isosurface level 0.0035 a.u.) in corannulene-based (*a*) and dibenzo[*a*,*g*]corannulene-based (*b*) solvent-separated ion pairs [{($P(CH_3)_4^+$ }(PAH^-)] (PBE0/cc-pVTZ(C,H,O,P)).