Intersystem Crossing in Tunneling Regime: $T_1 \rightarrow S_0$ Relaxation in

Thiophosgene

Supplementary Information

Aleksandr O. Lykhin and Sergey A. Varganov*

Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557-

0216, United States.

*E-mail: svarganov@unr.edu

Atomic Cartesian coordinates (Å) of Cl₂CS

CCSD(T)/def2-TZVP			CCSD(T)/def2-QZVP				
T_1 minimum			T_1	minimum			
Cl	-3.8012293973	-0.0455054886	0.0144637643	Cl	-3.7950574757	-0.0440990161	0.0137484140
Cl	-0.9162445295	-0.6784030290	0.0412832788	Cl	-0.9212472832	-0.6745453156	0.0404640522
С	-2.1864736428	0.4048649614	-0.4068518399	С	-2.1863587190	0.4054429309	-0.4055646823
S	-1.8174591807	2.0920066556	-0.2879497149	S	-1.8187432723	2.0861645002	-0.2877022955
S_0 r	ninimum			T_{1}	<i>'S</i> ⁰ Minimum e	nergy crossing	g point
Cl	-3.7686624483	-0.1084395202	-0.0178740818	Cl	-3.57983618	0.12374893	0.16242339
Cl	-0.9715867393	-0.7220599879	0.0081257822	Cl	-0.77891856	-0.82480449	0.08735520
С	-2.1607276437	0.5340527391	-0.1274785093	С	-1.97728172	0.22282909	-0.58177272
S	-1.8172554026	2.0911862610	-0.3285863091	S	-1.94651966	1.97557978	-0.27356340
$T_1/$	'S ₀ Minimum e	nergy crossing	g point	S_0	minimum		
Cl	-3.58768637	0.12135658	0.16390042	Cl	-3.7640050528	-0.1065627556	-0.0181934713
Cl	-0.77373328	-0.82847591	0.08800210	Cl	-0.9750244547	-0.7184073512	0.0077311491
С	-1.97706669	0.22227906	-0.58311239	С	-2.1609659495	0.5329723081	-0.1273391507
S	-1.94406978	1.98219359	-0.27434766	S	-1.8182367769	2.0867372906	-0.3280116451
T_1/S_0 Transition state crossing point			T_1/S_0 Transition state crossing point				
Cl	-3.58173655	0.17367164	0.17390345	Cl	-3.57448941	0.17588922	0.17290974
Cl	-0.69993083	-0.60389958	0.08933721	Cl	-0.70511825	-0.59839825	0.08870749
С	-2.04423284	0.22999499	-0.66929995	С	-2.04442026	0.22919310	-0.66925172
S	-1.55974415	1.98341938	-0.27992964	S	-1.56161646	1.97650237	-0.27835444

CASPT2(10,9)/def2-TZVP	CASPT2(24,16)/def2-TZVP		
T_1 minimum	T_1 minimum		
Cl-3.7987709732-0.04302273530.0137354069Cl-0.9174246522-0.67512236870.0405211051C-2.18624239790.4059678380-0.4056862796S-1.81896872692.0851403653-0.2876247441	Cl-3.8007856898-0.04184711390.0150787791Cl-0.9151270598-0.67489159990.0419045417C-2.18645812340.4048045142-0.4099927775S-1.81903587722.0848972990-0.2860450550		
<i>S</i> ⁰ minimum	T_1/S_0 Minimum energy crossing point		
Cl-3.7670547666-0.1104608643-0.0176502781Cl-0.9738965866-0.72322191720.0083131723C-2.16024624330.5362351322-0.1277604782S-1.81703463742.0921871412-0.3287155340	Cl -3.59796920 0.12388670 0.16809065 Cl -0.77441502 -0.83264390 0.08595042 C -1.97071062 0.23349616 -0.56355930 S -1.93946126 1.97261424 -0.29603937		
T_1/S_0 Minimum energy crossing point	<i>S</i> ⁰ minimum		
Cl -3.59135619 0.12134677 0.16001840 Cl -0.77363359 -0.83160906 0.08019643 C -1.97083145 0.23822666 -0.56297992 S -1.94673488 1.96938894 -0.28279244	Cl-3.7671576398-0.1116597031-0.0174984417Cl-0.9743076531-0.72435352930.0084621926C-2.16006847060.5370403125-0.1278642716S-1.81669847102.0937124115-0.3289125969		
T_1/S_0 Transition state crossing point	T_1/S_0 Transition state crossing point		
Cl -3.6038513 0.2009073 0.1697909 Cl -0.6673794 -0.5916077 0.0836280 C -2.0389692 0.2483995 -0.6622357 S -1.5754443 1.9254873 -0.2771722	170.6956697650.003886463-1.520612070170.6956697600.0038864531.52061206760.0318084840.6237093350.00000002216-1.533690023-0.2425968120.000000001		

Figure S1. Natural bonding orbitals of (24,16) active space. The occupation numbers of molecular orbitals are given in blue and red.

Internal coordinates of S_0 , T_1 , MECP, and TSCP in Cl₂CS

Parameter	CASPT2(24,16)/	CASPT2(10,9)/	CCSD(T)/	CCSD(T)/
	def2-TZVP	def2-TZVP	def2-TZVP	def2-QZVP
r (C-Cl ₂), Å	1.728	1.726	1.729	1.722
r(C-S), Å	1.724	1.723	1.731	1.724
α (Cl ₁ -C-S), deg.	115.7	115.9	115.9	115.9
$\boldsymbol{\beta}$ (Cl ₂ -C-Cl ₁), deg.	117.5	117.4	117.4	117.4
$\Theta(Cl_1-S-Cl_2-C)$, deg.	21.5	21.2	21.3	21.3

Table S1. The T_1 (C_s) excited state.

Table S2. The S_0 ($C_{2\nu}$) ground state.

Parameter	CASPT2(24,16)/	CASPT2(10,9)/	CCSD(T)/	CCSD(T)/	Fyn 1*	Exp. ² *
	def2-TZVP	def2-TZVP	def2-TZVP	def2-QZVP	цур.	
r (C-Cl ₂), Å	1.737	1.736	1.735	1.729	1.729±0.003	1.728 ± 0.003
r (C-S), Å	1.607	1.606	1.607	1.604	1.601 ± 0.003	1.602 ± 0.005
α (Cl ₁ -C-S), deg.	124.6	124.5	124.4	124.4	124.41±0.16	124.41±0.16
β (Cl ₂ -C-Cl ₁), deg.	110.8	110.9	111.2	111.3	111.19±0.16	111.2±0.3
θ(Cl ₁ -S-Cl ₂ -C), deg.	0	0	0	0	0	0

 * uncertainties are given as standard deviations for observable values of $^{35}Cl_2CS$

Table S3. The T_1/S_0 (C_1) minimum energy crossing point (MECP).

/			,	
Parameter	CASPT2(24,16)/	CASPT2(10,9)/	CCSD(T)/	CCSD(T)/
	def2-TZVP	def2-TZVP	def2-TZVP	def2-QZVP
r (C-Cl ₁), Å	1.788	1.778	1.778	1.770
r (C-Cl ₂), Å	1.729	1.730	1.733	1.727
r(C-S), Å	1.760	1.754	1.787	1.780
α (Cl ₁ -C-S), deg.	90.9	90.7	90.0	89.9
β (Cl ₂ -C-Cl ₁), deg.	116.0	116.0	121.2	121.2
θ(Cl ₁ -S-Cl ₂ -C), deg.	42.0	42.0	42.9	43.0

Table S4. The T_1/S_0 transition state crossing point (TSCP).

Parameter	CASPT2(26,14)/	CASPT2(10,9)/	CCSD(T)/	CCSD(T)/
	def2-TZVP	def2-TZVP	def2-TZVP	def2-QZVP
r (C-Cl ₁), Å	1.771	1.773	1.754	1.747
r(C-Cl ₂), Å	1.771	1.773	1.754	1.747
r(C-S), Å	1.789	1.782	1.860	1.854
α (Cl ₁ -C-S), deg.	99.1	98.8	99.1	98.9
β (Cl ₂ -C-Cl ₁), deg.	118.3	118.2	116.6	116.6
θ (Cl ₁ -S-Cl ₂ -C), deg.	36.6	36.9	37.1	37.2

Table S5. Fitting parameters for S_0 and T_1 PESs along the ISC reaction path approximated by quartic functions ($ax^4+bx^3+cx^2+dx+e$).

	CASSPT2(10,	CASSPT2(10,9)/def2-TZVP		CASSPT2(24,16)/def2-TZVP	
Parameters	Singlet	Triplet	Singlet	Triplet	
а	-4.847727	2.5062140×10-2	-1.0873181	1.9255065×10-2	
b	1.4218237×10^{1}	-2.5452152×10 ⁻²	2.9084331	-1.7934022×10 ⁻²	
С	-1.5528009×10 ¹	2.8364697×10 ⁻²	-2.8377169	2.1629875×10 ⁻²	
d	7.6198993	-1.5135414×10 ⁻³	1.3121716	-1.2585686×10 ⁻³	
е	-1.4383768	1.6287824×10 ⁻⁵	-2.6934314×10 ⁻¹	2.1580948×10 ⁻⁵	

Tuble bol ddb					
Basis set	Property	S_0 minimum	T_1 minimum	¹ MECP (singlet)	³ MECP (triplet)
	 t ₁	0.101	0.159	0.272	0.197
dof2 T7VD	 t ₂	0.564	0.546	0.609	0.555
ueiz-izvP	T1 diagnostic	0.015	0.020	0.039	0.026
	D ₁ diagnostic	0.049	0.076	0.181	0.100
	 t 1	0.101	0.160	0.265	0.195
dof2 O7VD	 t ₂	0.568	0.551	0.610	0.559
del2-QZVP	T1 diagnostic	0.015	0.020	0.038	0.026
	D ₁ diagnostic	0.048	0.075	0.176	0.099

Table S6. CCSD(T) diagnostic parameters for def2-TZVP and def2-QZVP basis sets.

Table S7. Leading determinants with reference coefficients greater than 0.05.

Structure	Determinant	Coefficient
¹ MECP (singlet)	2222222222220000	0.9163104
	22222222222202000	-0.2457760
	2222222222/\2000	-0.0758129
	222222/2222\2000	-0.0695163
	2222222/222\2000	-0.0689836
	22222222222/\000	-0.0583794
³ MECP (triplet)	22222222222//000	0.9592358
S ₀ minimum	2222222222220000	0.9514682
	22222222222022000	-0.1364950
	222222/222\22000	0.0766083
	222/\22222220/\0	0.0600286
	2222022222220020	-0.0514540
T_1 minimum	22222222222//000	0.9644293
	222222/2222/2000	-0.0611195
	22220222222//020	-0.0542657

Zhu-Nakamura formulas

The spin-orbit coupling constant, *H*_{SOC}, is expressed as

$$H_{SOC} = \sqrt{\sum_{M_{S}=-S}^{S} \sum_{M_{S}'=-S'}^{S'} \left| \left\langle SM_{S} \left| \hat{H}_{SO} \right| S'M_{S}' \right\rangle \right|^{2}},$$
(S1)

where M_S and M_S' are the magnetic quantum numbers, and the sum runs over spins S and S'. To calculate the probability of transition using the Zhu-Nakamura formula for a sloped intersection, one should determine a single passage probability p_{ZN} and the total phase ψ . In the case of energies equal and higher than the critical point ($b \ge 0$), ψ can be found from the following equation:

$$\psi = \sigma + \phi_{S}. \tag{S2}$$

The phase σ varies with respect to ϵ_{\perp} as

 $\varepsilon_{\perp} \leq E_1(r_0)$

$$\sigma = \sigma_0, \tag{S3}$$

$$\delta = -\int_{r_0}^{t_1} \left| K_1(r) \right| dr + \int_{r_0}^{t_2} \left| K_2(r) \right| dr + \delta_0$$
(S4)

 $E_1(r_0) \leq \varepsilon_\perp \leq E_2(r_0)$

$$\sigma = \int_{t_1}^{t_0} K_1(r) dr + \sigma_0,$$
 (S5)

$$\delta = \int_{r_0}^{t_2} |K_2(r)| dr + \delta_0$$
 (S6)

$$\varepsilon_{\perp} > E_2(r_0)$$

$$\sigma = \int_{t_1}^{t_0} K_1(r) dr - \int_{t_2}^{t_0} K_2(r) dr + \sigma_0,$$
(S7)
$$\delta = \delta$$
(S9)

$$\delta = \delta_0 \tag{S8}$$

where

$$K_{i}(r) = \sqrt{\frac{2\mu}{\hbar^{2}} \left(\varepsilon_{\perp} - E_{i}(r)\right)},$$
(S9)

$$\sigma_{0} + i\delta_{0} = \frac{\pi}{a\sqrt{8}} \frac{C_{-} + iC_{+}}{F_{-}^{2} + F_{+}^{2}},$$
(S10)

$$F_{\pm} = \sqrt{\sqrt{(b^2 + \gamma_1)^2 + \gamma_2}} \pm (b^2 + \gamma_1) + \sqrt{\sqrt{(b^2 - \gamma_1)^2 + \gamma_2}} \pm (b^2 - \gamma_1),$$
(S11)

$$C_{+} = F_{+} \left(b^{2} \rightarrow \left[b^{2} - \frac{0.16b_{x}}{\sqrt{b^{4} + 1}} \right] \right), \tag{S12}$$

$$C_{-} = F_{-} \left(\gamma_{2} \rightarrow \left[\frac{0.45d}{1 + 1.5 \exp(2.2b_{x} \left| b_{x} \right|^{0.57})} \right] \right),$$
(S13)

$$b_x = b^2 - 0.9553, \ \gamma_1 = 0.9\sqrt{d^2 - 1}, \ \gamma_2 = \frac{7}{16}d$$
 (S14)

Finally, the dynamical phase ϕ_S is given as

$$\phi_{S} = -\frac{\delta_{\psi}}{\pi} + \frac{\delta_{\psi}}{\pi} \ln\left(\frac{\delta_{\psi}}{\pi}\right) - \arg\Gamma\left(i\frac{\delta_{\psi}}{\pi}\right) - \frac{\pi}{4},$$
(S15)

with δ_ψ being simply a correction for δ

$$\delta_{\psi} = \delta (1 + \frac{5a^{1/2}}{a^{1/2} + 0.8} 10^{-\sigma}).$$
(S16)

In case of energies lower than the critical point (b<0), ψ appears as an argument of the Stokes constant U_1 ,

$$\psi = \arg(U_1), \tag{S17}$$

$$\operatorname{Re}(U_{1}) = \cos(\sigma) \left[e^{\delta} \sqrt{B(\sigma/\pi)} - g_{1} \sin^{2}(\sigma) \frac{e^{-\delta}}{\sqrt{B(\sigma/\pi)}} \right],$$
(S18)

$$Im(U_{1}) = \sin(\sigma) \left[B(\sigma / \pi) e^{2\delta} - g_{1}^{2} \cos^{2}(\sigma) \sin^{2}(\sigma) \frac{e^{-2\delta}}{B(\sigma / \pi)} + 2g_{1} \cos^{2}(\sigma) - g_{2} \right].$$
 (S19)

The parameters g_1, g_2 and function B(x) are given as

$$g_1 = 1.8(a^2)^{0.23} e^{-\delta}$$
, (S20)

$$g_2 = \frac{3\sigma}{\pi\delta} \ln(1.2 + a^2) - \frac{1}{a^2},$$
 (S21)

$$B(x) = \frac{2\pi x^{2x} \exp(-2x)}{x\Gamma^2(x)}.$$
 (S22)

References

- (1) Carpenter, J. H.; Rimmer, D. F.; Smith, J. G.; Whiffen, D. H. *J. Chem. Soc. Faraday Trans. 2* **1975**, *71*, 1752.
- (2) Nakata, M.; Fukuyama, T.; Kuchitsu, K. J. Mol. Struct. **1982**, 81, 121–129.
- (3) Fujiwara, T.; Lim, E. C.; Judge, R. H.; Moule, D. C. J. Chem. Phys. 2006, 124, 124301.
- (4) Clouthier, D. J.; Moule, D. C. In *Relationships and Mechanisms in the Periodic Table*; Springer Berlin Heidelberg: Berlin, Heidelberg, 1989; Vol. 150, pp 167–247.