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1 Computational Methods

1.1 The mean first-passage time method

The mean first-passage time (MFPT) 7(x) is defined as the average elapsed time that a system reaches the state x from its initial state x
for the first time. For a activated process, 7(x) shows a sigmoidal shape. The dynamics of many activated processes can be described in
terms of the Fokker-Planck! s 9 5 20
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where P(x,7) is the probability density for the state x at time ¢. D(x) is the generalized diffusion coefficient, J(x,7) is the state current,

AG(x) is the free energy difference and § = 1/kgT. The MFPT for an activated process described in Eq. 1 is then given by
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We use the embryo size, n, to identify the thermodynamic state during nucleation. Eq. 2 can be fitted by the following expression?2,
1 *
t(n) = m[l—l—erf((n—n )o)], 3)
where n* is the critical size of the nucleus, J is the nucleation rate, erf(x) is the error function, and ¢ = \/|AG" (n*)|/2kpT. From the fit

of 7(n), J and n* are obtained accordingly.

If the system reaches the steady state, ie dPst(x)/dt = 0, Eq.1 can be rewritten as,
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upon integration yields
dx’
BAG(x) = —InPy(x) *J/ D)Py () +C, (5)
The free energy barrier is then given by 34
X dx
BAG(}C) = ]H[B(X)] - Ju m +C, (6)
where , .
B(x)= ——[] Py(x)ax' —Jvz(x)]. @
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Using the knowledge of P(n,t), J and 7(n), the nucleation barrier is calculated.
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Fig. 1 The glass transition temperature 7, of CusoZrs film. (a) The film with the thickness of d = 3a. (b) Tg as a function of thickness
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Fig. 2 The location distributions of crystal nucleus for CusyZrs film with the thickness of d = 3a along the z direction.
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Fig. 3 The liquidsolid equilibrium temperature of sphere-like nucleus versus the inverse of nucleus radius for CuZr. The solid lines are linear fits.
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Fig. 4 Morphological evolution of crystal clusters in CusyZrs liquid films. The red balls in (a) and (b) represent the cluster shapes for d = 4a at 800 K
and the blue balls in (c) and (d) refer to the cluster for d = 5a at 800 K, respectively. The gray dots denote the liquid-like atoms.
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Fig. 5 Stress along the x, y, and z directions for CusyZrs, film with different thickness (a = 4.22 A, the lattice constant of CuZr compound), the open
symbols denote the value of samples when the tensile stresses are applied.
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