## Electronic Supplementary Information (ESI)

## Materials chemistry for rechargeable zinc-ion batteries

Ning Zhang,<sup>a,b</sup> Xuyong Chen,<sup>a</sup> Meng Yu<sup>a</sup>, Zhiqiang Niu,<sup>a</sup> Fangyi Cheng<sup>\*a</sup> and Jun Chen<sup>a</sup>

<sup>a</sup> Renewable Energy Conversion and Storage Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China. E-mail: fycheng@nankai.edu.cn

<sup>b</sup> College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.



**Fig. S1** (a) Typical cyclic voltammetry curves of  $V_2O_5$  cathode and the corresponding (b) log*i* vs log*v* plots for the pseudocapacitive analysis. Reproduced with permission from ref. 39. Copyright 2018, American Chemical Society.



**Fig. S2** (a) Schematic illustration of the interlayer spacing and hydrophilicity engineering for  $MoS_2$ . TEM images of (b)  $MoS_2$ -O and (c)  $MoS_2$  nanosheets. Reproduced with permission from ref. 49. Copyright 2019, American Chemical Society.

| Cathode                         | Electrolyte                                             | Anode                                      | Voltage<br>(V)           | Capacity (mAh g <sup>-1</sup> ) | Capacity retention/cycles                      | Ref.           |        |
|---------------------------------|---------------------------------------------------------|--------------------------------------------|--------------------------|---------------------------------|------------------------------------------------|----------------|--------|
| α-MnO <sub>2</sub>              | 1 M ZnSO <sub>4</sub>                                   | Zn foil                                    | 1.0-1.8                  | 233 (83 mA g <sup>-1</sup> ),   | 65%/50 cycles (83 mA g <sup>-1</sup> )         | [S1]           |        |
|                                 |                                                         |                                            |                          | 43.3 (133 mA g <sup>-1</sup> )  |                                                |                |        |
| $\alpha$ -MnO <sub>2</sub>      | 1 M ZnSO <sub>4</sub>                                   | Zn foil                                    | 0.7–2.0                  | 195 (10.5 mA g <sup>-1</sup> )  | 70%/30 cycles (42 mA g <sup>-1</sup> )         | [S2]           |        |
| $\alpha$ -MnO <sub>2</sub>      | 2 M ZnSO <sub>4</sub> + 0.1 M<br>MnSO <sub>4</sub>      | Zn foil                                    | 1.0–1.8                  | 255 (61.6 mA g <sup>-1</sup> )  | 92%/5000 cycles (1540 mA g <sup>-1</sup> )     | [\$3]          |        |
| α-MnO₂                          | 2 M ZnSO <sub>4</sub> + 0.1 M<br>MnSO <sub>4</sub>      | Polyamide<br>coated Zn                     | 0.6–<br>1.75             | 300 (20 mA g <sup>-1</sup> )    | 88%/1000 cycles (600 mA g <sup>-1</sup> )      | [S4]           |        |
| $\alpha$ -MnO <sub>2</sub>      | EG-waPUA/PAM<br>hydrogel electrolyte                    | Zn electroplated<br>nickel–copper<br>cloth | 0.9–1.8                  | 275 (200 mA g <sup>-1</sup> )   | 87.4%/600 cycles (2400 mA g <sup>-</sup><br>1) | [S5]           |        |
| $\alpha$ -MnO <sub>2</sub> /CNT | 2 M ZnSO <sub>4</sub> + 0.5 M<br>MnSO <sub>4</sub>      | Zn powder                                  | 1.0–1.9                  | 665 (100 mA g <sup>-1</sup> )   | 99%/500 cycles (5000 mA g <sup>-1</sup> )      | [S6]           |        |
| $\alpha$ -MnO <sub>2</sub>      | 1 M ZnSO <sub>4</sub>                                   | Zn foil                                    | 0.8–2.0                  | 205 (10 mA g <sup>-1</sup> )    | 66%/30 cycles (10 mA g <sup>-1</sup> )         | [S7]           |        |
| α-MnO₂@<br>Graphene             | 2 M ZnSO <sub>4</sub> + 0.2 M<br>MnSO <sub>4</sub>      | Zn foil                                    | 1.0 <del>-</del><br>1.85 | 382.2 (300 mA g <sup>-1</sup> ) | 94%/3000 cycles (3000mA g <sup>-1</sup> )      | [S8]           |        |
| α-MnO₂/rGO                      | 2 M ZnSO <sub>4</sub> + 0.1 M<br>MnSO <sub>4</sub>      | Electroplated Zn on carbon cloth           | 1.0–1.9                  | 332.2 (300 mA g <sup>-1</sup> ) | 96%/500 cycles (6000mA g <sup>-1</sup> )       | [S9]           |        |
| $\beta$ -MnO <sub>2</sub>       | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> + | Zn foil                                    | 0.8–1.9                  | 225 (200 mA g <sup>-1</sup> )   | 94%/2000 cycles (2000 mA g <sup>-1</sup> )     | [S10]          |        |
|                                 | 0.1 M Mn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> |                                            |                          |                                 |                                                |                |        |
| $\beta$ -MnO <sub>2</sub>       | 1 M ZnSO <sub>4</sub>                                   | Zn foil                                    | 1.0-1.8                  | 180 (200 mA g <sup>-1</sup> )   | 75%/200 cycles (200 mA g <sup>-1</sup> )       | [S11]          |        |
| γ-MnO <sub>2</sub>              | 1 M ZnSO <sub>4</sub>                                   | Zn foil                                    | 1.0-1.8                  | 285 (0.05 mA cm <sup>-2</sup> ) | 63%/40 cycles (0.5 mA cm <sup>-2</sup> )       | [S12]          |        |
| $\delta$ -MnO <sub>2</sub>      | 1 M ZnSO <sub>4</sub>                                   | Zn foil                                    | 1.0-1.8                  | 285 (83 mA g <sup>-1</sup> ),   | 43%/100 cycles (83 mA g <sup>-1</sup> )        | [S13]          |        |
|                                 |                                                         |                                            |                          | 92 (666 mA g <sup>-1</sup> )    |                                                |                |        |
| $\delta$ -MnO <sub>2</sub>      | 1 M ZnSO <sub>4</sub> + 0.1 M                           | Zn foil                                    | 1.0-                     | 266 (100 mA g <sup>-1</sup> )   | 79.6%/2000 cycles                              | [S14]          |        |
|                                 | 1011304                                                 |                                            | 1.85                     |                                 | (2000 mA g <sup>-1</sup> )                     |                |        |
| $\delta$ -MnO <sub>2</sub>      | 1 M ZnSO <sub>4</sub>                                   | Zn deposited                               | 1.0-<br>1.75             | 235 (200 mA g <sup>-1</sup> )   | 45.6%/100 cycles                               | [S15]          |        |
| granhite                        |                                                         | NI-IUaini                                  | 1.75                     |                                 | (400 mA g <sup>-1</sup> )                      |                |        |
| δ-MnO-                          | 0 5 M 7p(TESI), /AN                                     | Zn foil                                    | 0.05                     | 0.05                            | 123 (12 3 mΔ σ <sup>-1</sup> )                 | 50%/125 cycles | [\$16] |
| 0-141102                        | 0.5 10 211(11 51)2/ AN                                  | 2111011                                    | 1.9                      | 123 (12.3 IIIA g )              | $(12.3 \text{ mA g}^{-1})$                     | [510]          |        |
| MnO <sub>2</sub>                | 2 M ZnSO <sub>4</sub> + 0.2 M                           | MOF-coated Zn                              | 0.8–1.9                  | 192.4 (500 mA g <sup>-1</sup> ) | 88.9%/600 cycles                               | [S17]          |        |
| -                               | MnSO <sub>4</sub>                                       | foil                                       |                          |                                 | ·                                              | -              |        |

**Table S1** Summary of the configuration and electrochemical performance for ZIBs.

|                                                        |                                                                                                                    |              |         |                                 | (700 mA g⁻¹)                              |        |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------|---------|---------------------------------|-------------------------------------------|--------|
| MnO <sub>2</sub>                                       | 2 M ZnSO <sub>4</sub> + 0.1 M<br>MnSO <sub>4</sub>                                                                 | Zn foil      | 1.0–1.9 | 275 (300 mA g <sup>-1</sup> ),  | -/2000 cycles (3000 mA g <sup>-1</sup> )  | [S18]  |
|                                                        | -                                                                                                                  |              |         | 121 (3000 mA g <sup>-1</sup> )  |                                           |        |
| MnO <sub>2</sub> containing                            | 1 M ZnSO <sub>4</sub>                                                                                              | Zn foil      | 1.0–1.9 | 350 (100 mA g <sup>-1</sup> )   | 75.3%/200 cycles                          | [S19]  |
| crystar water                                          |                                                                                                                    |              |         |                                 | (3000 mA g <sup>-1</sup> )                |        |
| Commercial<br>MpO                                      | 1 M ZnSO <sub>4</sub> + 0.5 M                                                                                      | PMA-modified | 0.8–1.9 | 156.8 (200 mA g <sup>-1</sup> ) | 98.5%/600 cycles                          | [S20]  |
| WillO <sub>2</sub>                                     | $MnSO_4 + 1 g L^{-1}$<br>Polyacrylamide                                                                            | Znæcumesn    |         |                                 | (1000 mA g <sup>-1</sup> )                |        |
| MnO <sub>2</sub> @carbon                               | 2 M ZnSO <sub>4</sub> + 0.2 M                                                                                      | Zn foil      | 1.0–1.8 | 290 (90 mA g <sup>-1</sup> )    | 99.3%/10000 cycles                        | [S21]  |
|                                                        | 1411304                                                                                                            |              |         |                                 | (1885 mA g <sup>-1</sup> )                |        |
| Mn <sub>3</sub> O <sub>4</sub>                         | 2 M ZnSO <sub>4</sub>                                                                                              | Zn foil      | 0.8–1.9 | 239.2 (100 mA g <sup>-1</sup> ) | 72%/300 cycles (500 mA g <sup>-1</sup> )  | [S22]  |
| Binder-free<br>Mn <sub>3</sub> O <sub>4</sub>          | 2 M ZnSO <sub>4</sub> + 0.1 M<br>MnSO <sub>4</sub>                                                                 | Zn foil      | 1.0–1.8 | 296 (100 mA g <sup>-1</sup> )   | 100%/500 cycles (500 mA g <sup>-1</sup> ) | [S23]  |
| $\alpha$ -Mn <sub>2</sub> O <sub>3</sub>               | 2 M ZnSO <sub>4</sub> + 0.1 M                                                                                      | Zn foil      | 1.0-1.9 | 75 (2000 mA g <sup>-1</sup> )   | 65%/2000 cycles                           | [S24]  |
|                                                        | MnSO <sub>4</sub>                                                                                                  |              |         |                                 | (2000 mA g <sup>-1</sup> )                |        |
| Na <sub>0.44</sub> MnO <sub>2</sub>                    | 1 M Na <sub>2</sub> SO <sub>4</sub> + 0.5 M<br>ZnSO <sub>4</sub> + 0.05 M<br>MnSO <sub>4</sub>                     | Zn foil      | 1.0–1.9 | 340 (100 mA g <sup>-1</sup> )   | 100%/150 cycles (100 mA g <sup>-1</sup> ) | [S25]  |
| $Na_{0.95}MnO_2$                                       | $0.5 \text{ M Zn}(CH_3COO)_2$<br>+ 0.5 M CH_3COONa                                                                 | Zn foil      | 1.0–2.0 | 60 (50 mA g <sup>-1</sup> )     | 92%/1000 cycles (200 mA g <sup>-1</sup> ) | [S26]  |
| Ca <sub>0.28</sub> MnO <sub>2</sub> ·0.5H <sub>2</sub> | 1 M ZnSO <sub>4</sub> + 0.1 M                                                                                      | Zn foil      | 0.4–1.9 | 298 (175 mA g <sup>-1</sup> ),  | 81%/5000 cycles                           | [S27]  |
| 0                                                      | WIISO4                                                                                                             |              |         | 124.5(3500 mA g <sup>-1</sup> ) | (3500 mA g <sup>-1</sup> )                |        |
| KMn <sub>8</sub> O <sub>16</sub>                       | 1 M ZnSO <sub>4</sub> + 0.3 M<br>KSO <sub>4</sub>                                                                  | Zn foil      | 0.8–1.8 | 130 (100 mA g <sup>-1</sup> )   | 50%/100 cycles (100 mA g <sup>-1</sup> )  | [S28]  |
| $K_{0.8}Mn_8O_{16}$                                    | 2 M ZnSO <sub>4</sub> + 0.1 M<br>KSO <sub>4</sub>                                                                  | Zn foil      | 0.8–1.8 | 320 (100 mA g <sup>-1</sup> )   | -/1000 cycles (1000 mA g <sup>-1</sup> )  | [S29]  |
| PANI-intercalated                                      | 2 M ZnSO <sub>4</sub> + 0.1 M                                                                                      | Zn foil      | 1.0-1.8 | 280 (200 mA g <sup>-1</sup> )   | 85%/5000 cycles                           | [S30]  |
| WINO <sub>2</sub>                                      | WINSO <sub>4</sub>                                                                                                 |              |         |                                 | (2000 mA g <sup>-1</sup> )                |        |
| MnOx@N-doped<br>carbon                                 | 1 M ZnSO <sub>4</sub>                                                                                              | Zn foil      | 0.8–1.8 | 100 (2000 mA g <sup>-1</sup> )  | -/1600 cycles (2000 mA g <sup>-1</sup> )  | [S31]  |
| LiMn <sub>2</sub> O <sub>4</sub>                       | 20 m LiTFSI+ 1 m<br>Zn(TFSI) <sub>2</sub>                                                                          | Zn foil      | 0.8–2.1 | 66 (0.2 C)                      | 85%/4000 cycles (4 C)                     | [\$32] |
| ZnMn <sub>2</sub> O <sub>4</sub>                       | 1 M ZnSO <sub>4</sub> + 0.05 M<br>MnSO <sub>4</sub>                                                                | Zn foil      | 0.8–1.9 | 106.5 (100 mA g <sup>-1</sup> ) | 84%/300 cycles (100 mA g <sup>-1</sup> )  | [\$33] |
| ZnMn <sub>2</sub> O <sub>4</sub>                       | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> +<br>0.1 M Mn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> | Zn foil      | 0.8–2.0 | 150 (50 mA g⁻¹)                 | 94%/500 cycles (500 mA g <sup>-1</sup> )  | [S34]  |
|                                                        |                                                                                                                    |              |         |                                 |                                           |        |

| ZnAl <sub>x</sub> Co <sub>2-x</sub> O <sub>4</sub>                  | 0.3 M<br>Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> /MeCN | Zn foil    | 1.4–2.2      | 134 (32 mA g <sup>-1</sup> )     | 97%/100 cycles (32 mA g <sup>-1</sup> )    | [S35]  |
|---------------------------------------------------------------------|------------------------------------------------------------------|------------|--------------|----------------------------------|--------------------------------------------|--------|
| ZnNi <sub>x</sub> Mn <sub>x</sub> Co <sub>2-2x</sub> O <sub>4</sub> | 0.3 M<br>Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> /MeCN | Zn foil    | 0.9–<br>2.15 | 180 (21 mA g <sup>-1</sup> )     | 90%/100 cycles (42 mA g <sup>-1</sup> )    | [\$36] |
| $V_2O_5$                                                            | 21 m LiTFSI+ 1 m                                                 | Zn foil    | 0.2–1.6      | 238 (50 mA g <sup>-1</sup> ),    | 80%/2000 cycles (2000 mA g <sup>-1</sup> ) | [S37]  |
|                                                                     | 211(013503)2                                                     |            |              | 156 (1000 mA g <sup>-1</sup> )   |                                            |        |
| V <sub>2</sub> O <sub>5</sub>                                       | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>            | Zn foil    | 0.2–1.6      | 470 (200 mA g <sup>-1</sup> )    | 91.1%/4000 cycles                          | [S38]  |
|                                                                     |                                                                  |            |              |                                  | (5000 mA g <sup>-1</sup> )                 |        |
| V <sub>2</sub> O <sub>5</sub>                                       | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>            | Zn foil    | 0.5–1.5      | 319 (20 mA g <sup>-1</sup> )     | 81%/500 cycles (600 mA g <sup>-1</sup> )   | [S39]  |
| V <sub>2</sub> O <sub>5</sub>                                       | 3 M ZnSO <sub>4</sub>                                            | Zn foil    | 0.4–1.4      | 224 (100 mA g <sup>-1</sup> )    | 67%/400 cycles (1000 mA g <sup>-1</sup> )  | [S40]  |
| V <sub>2</sub> O <sub>5</sub>                                       | 2 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>            | Zn foil    | 0.3–1.5      | 401 (100 mA g <sup>-1</sup> )    | 73%/1000 cycles                            | [S41]  |
|                                                                     |                                                                  |            |              |                                  | (2000 mA g <sup>-1</sup> )                 |        |
| V <sub>2</sub> O <sub>5</sub>                                       | Zn(TFSI) <sub>2</sub> /Ace<br>eutectic                           | Zn foil    | 0.6–1.8      | 110 (600 mA g <sup>-1</sup> )    | 92.8%/800 cycles (600 mA g <sup>-1</sup> ) | [S42]  |
| V <sup>4+</sup> -V <sub>2</sub> O <sub>5</sub>                      | 2 M ZnSO <sub>4</sub>                                            | Zn foil    | 0.4–1.4      | 262.1 (1000 mA g <sup>-1</sup> ) | 82%/1000 cycles                            | [S43]  |
|                                                                     |                                                                  |            |              |                                  | (10000 mA g <sup>-1</sup> )                |        |
| V <sub>2</sub> O <sub>5</sub> ·1.6H <sub>2</sub> O                  | 2 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>            | Zn foil    | 0.3-         | 426 (100 mA g <sup>-1</sup> ),   | 95%/5000 cycles                            | [S44]  |
|                                                                     |                                                                  |            | 1.05         | 251 (20000 mA g <sup>-1</sup> )  | (10000 mA g <sup>-1</sup> )                |        |
| V <sub>2</sub> O <sub>5</sub> <sup>•</sup> 2.2H <sub>2</sub> O      | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>            | Zn/SS mesh | 0.3–1.6      | 450 (100 mA g <sup>-1</sup> ),   | 72%/3000 cycles                            | [S45]  |
|                                                                     |                                                                  |            |              | 222 (10000 mA g <sup>-1</sup> )  | (5000 mA g <sup>-1</sup> )                 |        |
| V <sub>2</sub> O <sub>5</sub> /CNT                                  | $1 \text{ M ZnSO}_4$                                             | Zn foil    | 0.2–1.7      | 312 (1000 mA g <sup>-1</sup> )   | 81%/2000 cycles (1000 mA g <sup>-1</sup> ) | [S46]  |
| $V_2O_5$ /graphene                                                  | 3 M ZnSO <sub>4</sub>                                            | Zn foil    | 0.2–1.8      | 489 (100 mA g <sup>-1</sup> ),   | 80%/3500 cycles                            | [S47]  |
|                                                                     |                                                                  |            |              | 123 (70000 mA g <sup>-1</sup> )  | (30000 mA g <sup>-1</sup> )                |        |
| $V_2O_5 \cdot nH_2O/$                                               | $3 \text{ MZn}(\text{CF}_3\text{SO}_3)_2 + 0.1 \text{ M}$        | Zn foil    | 0.2–1.6      | 381 (60 mA g <sup>-1</sup> ),    | 71%/900 cycles (6000 mA g <sup>-1</sup> )  | [S48]  |
| graphene                                                            |                                                                  |            |              | 248 (30000 mA g <sup>-1</sup> )  |                                            |        |
| VO <sub>2</sub>                                                     | 1 M ZnSO <sub>4</sub>                                            | Zn foil    | 0.2–1.3      | 325.6 (50 mA g <sup>-1</sup> )   | 86%/5000 cycles (3000 mA g <sup>-1</sup> ) | [S49]  |
| VO <sub>2</sub>                                                     | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>            | Zn foil    | 0.2–1.2      | 357 (50 mA g <sup>-1</sup> ),    | 91.2%/300 cycles (850 mA g <sup>-1</sup> ) | [S50]  |
|                                                                     |                                                                  |            |              | 171 (51200 mA g <sup>-1</sup> )  |                                            |        |
| VO <sub>2</sub> /graphene                                           | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>            | Zn foil    | 0.3–1.3      | 276 (100 mA g <sup>-1</sup> )    | 99%/1000 cycles (4000 mA g <sup>-1</sup> ) | [S51]  |
| $V_3O_7 \cdot H_2O$                                                 | $1 \text{ M ZnSO}_4$                                             | Zn/rGO     | 0.3–1.5      | 267 (300 mA g <sup>-1</sup> )    | 79%/1000 cycles (1500 mA g <sup>-1</sup> ) | [S52]  |
| $V_3O_7 \cdot H_2O$                                                 | $1 \text{ M ZnSO}_4$                                             | Zn foil    | 0.4–1.1      | 375 (375 mA g <sup>-1</sup> )    | 80%/200 cycles (3000 mA g <sup>-1</sup> )  | [S53]  |
| $H_2V_3O_8$                                                         | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>            | Zn foil    | 0.2–1.6      | 423.8 (100 mA g <sup>-1</sup> )  | 94.3%/1000 cycles                          | [S54]  |
|                                                                     |                                                                  |            |              |                                  |                                            |        |

|                                                     |                                                           |              |              |                                  | (5000 mA g <sup>-1</sup> )                 |        |
|-----------------------------------------------------|-----------------------------------------------------------|--------------|--------------|----------------------------------|--------------------------------------------|--------|
| $H_2V_3O_8$ /graphene                               | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>     | Zn foil      | 0.2–1.6      | 394 (100 mA g <sup>-1</sup> ),   | 87%/2000 cycles (6000 mA g <sup>-1</sup> ) | [S55]  |
|                                                     |                                                           |              |              | 270 (6000 mA g <sup>-1</sup> )   |                                            |        |
| V <sub>5</sub> O <sub>12</sub> ·6H <sub>2</sub> O   | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> ;   | Zn foil      | 0.2–1.6      | 354.8 (500 mA g <sup>-1</sup> ), | 94%/1000 cycles (2000 mA g <sup>-1</sup> ) | [S56]  |
|                                                     | Gelatin/Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> |              |              | 300 (100 mA g <sup>-1</sup> )    | 96%/50 cycles (100 mA g⁻¹)                 |        |
| V <sub>6</sub> O <sub>13</sub>                      | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>     | Zn foil      | 0.2–1.5      | 360 (200 mA g <sup>-1</sup> ),   | 92%/2000 cycles (4000 mA g <sup>-1</sup> ) | [S57]  |
|                                                     |                                                           |              |              | 145 (24000 mA g <sup>-1</sup> )  |                                            |        |
| $V_6O_{13}$ ·nH <sub>2</sub> O                      | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>     | Zn foil      | 0.2–1.4      | 395 (100 mA g <sup>-1</sup> ),   | 87%/1000 cycles (5000 mA g <sup>-1</sup> ) | [S58]  |
|                                                     |                                                           |              |              | 97 (20000 mA g <sup>-1</sup> )   |                                            |        |
| $V_{10}O_{24} \cdot 12H_2O$                         | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>     | Zn foil      | 0.7–1.7      | 165 (200 mA g <sup>-1</sup> )    | 80.1%/3000 cycles                          | [S59]  |
|                                                     |                                                           |              |              |                                  | (10000 mA g <sup>-1</sup> )                |        |
| LiV <sub>3</sub> O <sub>8</sub>                     | 1 M ZnSO <sub>4</sub>                                     | Zn foil      | 0.6-1.2      | 256 (16 mA g <sup>-1</sup> )     | 75%/65 cycles (133 mA g <sup>-1</sup> )    | [S60]  |
| $Li_xV_2O_5 \cdot nH_2O$                            | 2 M ZnSO <sub>4</sub>                                     | Zn foil      | 0.4–1.4      | 470 (500 mA g <sup>-1</sup> )    | 76%/500 cycles (5000 mA g <sup>-1</sup> )  | [S61]  |
| $Na_{0.33}V_2O_5$                                   | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>     | Zn foil      | 0.2–1.6      | 367.1 (100 mA g <sup>-1</sup> )  | 93%/1000 cycles (1000 mA g <sup>-1</sup> ) | [S62]  |
| $NaV_3O_8$                                          | 1 M ZnSO <sub>4</sub> + 1 M<br>NaSO <sub>4</sub>          | Zn foil      | 0.3–<br>1.25 | 380 (50 mA g <sup>-1</sup> )     | 82%/1000 cycles (4000 mA g <sup>-1</sup> ) | [\$63] |
| Na <sub>1.1</sub> V <sub>3</sub> O <sub>7.9</sub> / | 1 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>     | Zn foil      | 0.4–1.4      | 191 (50 mA g <sup>-1</sup> )     | 84.8%/100 cycles (300 mA g <sup>-1</sup> ) | [S64]  |
| graphene                                            |                                                           |              |              |                                  |                                            |        |
| $Na_2V_6O_{16}$ · $3H_2O$                           | 1 M ZnSO <sub>4</sub>                                     | Zn foil      | 0.4–1.4      | 266.6 (361 mA g <sup>-1</sup> )  | 80%/1000 cycles                            | [S65]  |
|                                                     |                                                           |              |              |                                  | (14440 mA g <sup>-1</sup> )                |        |
| $Na_5V_{12}O_{32}$                                  | 2 M ZnSO <sub>4</sub>                                     | Zn foil      | 0.4–1.4      | 281 (500 mA g <sup>-1</sup> )    | 71%/2000 cycles (4000 mA g <sup>-1</sup> ) | [S66]  |
| $K_2V_6O_{16}$ ·2.7H <sub>2</sub> O                 | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>     | Zn foil      | 0.4–1.4      | 239.2 (100 mA g <sup>-1</sup> )  | 82%/400 cycles (6000 mA g <sup>-1</sup> )  | [S67]  |
| $Ca_{0.20}V_2O_5 \cdot 0.8H_2O_5$                   | $30 \text{ m ZnCl}_2$                                     | Zn foil      | 0.25–<br>1.9 | 496 (50 mA g <sup>-1</sup> )     | 51.1%/100 cycles (50 mA g <sup>-1</sup> )  | [S68]  |
| $Ca_{0.25}V_2O_5\cdot nH_2O$                        | 1 M ZnSO <sub>4</sub>                                     | Zn foil      | 0.6–1.6      | 340 (0.2 C)                      | 96%/3000 cycles (80 C)                     | [S69]  |
| $CaV_6O_{16} \cdot 3H_2O$                           | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>     | Zn foil      | 0.2–1.6      | 367 (50 mA g⁻¹),                 | 100%/300 cycles (500 mA g <sup>-1</sup> )  | [S70]  |
|                                                     |                                                           |              |              | 265 (100 mA g <sup>-1</sup> )    |                                            |        |
| $Mg_{0.34}V_2O_5\cdot nH_2O$                        | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>     | Zn foil      | 0.2–1.8      | 352 (100 mA g <sup>-1</sup> )    | 97%/2000 cycles (5000 mA g <sup>-1</sup> ) | [S71]  |
| $Zn_{0.25}V_2O_5 \cdot nH_2O$                       | $1 \text{ M ZnSO}_4$                                      | Zn foil      | 0.5–1.4      | 300 (50 mA g <sup>-1</sup> )     | 80%/1000 cycles (2400 mA g <sup>-1</sup> ) | [S72]  |
| Al-doped<br>VO <sub>1.52</sub> (OH) <sub>0.77</sub> | $1 \text{ M ZnSO}_4$                                      | Zn foil      | 0.2–<br>1.13 | 156 (15 mA g <sup>-1</sup> )     | 68%/50 cycles (15 mA g <sup>-1</sup> )     | [\$73] |
| Zn <sub>2</sub> (OH)VO <sub>4</sub>                 | 2 M ZnSO <sub>4</sub> + 4%                                | Zn nanoflake | 0.4–1.5      | 204 (100 mA g <sup>-1</sup> )    | 89%/2000 cycles (4000 mA g <sup>-1</sup> ) | [S74]  |

|                                                                                       | fumed silica                                                                             |                                      |              |                                 |                                                |        |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------|--------------|---------------------------------|------------------------------------------------|--------|
| Zn <sub>3</sub> V <sub>2</sub> O <sub>7</sub> (OH) <sub>2</sub> ·2H <sub>2</sub><br>O | 1 M ZnSO <sub>4</sub>                                                                    | Zn foil                              | 0.2–1.8      | 213 (50 mA g <sup>-1</sup> )    | 68%/300 cycles (200 mA g <sup>-1</sup> )       | [S75]  |
| Fe₅V <sub>15</sub> O <sub>39</sub> (OH) <sub>9</sub> ·9<br>H <sub>2</sub> O           | 0.3 M Zn(TFSI) <sub>2</sub>                                                              | Zn foil                              | 0.4–1.6      | 385 (100 mA g <sup>-1</sup> )   | 80%/300 cycles (5000 mA g <sup>-1</sup> )      | [S76]  |
| $Mn_xV_2O_5 \cdot nH_2O$                                                              | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>                                    | Zn foil                              | 0.2–1.6      | 415 (50 mA g <sup>-1</sup> )    | 96%/2000 cycles (4000 mA g <sup>-1</sup> )     | [S77]  |
| $\delta\text{-Ni}_{0.25}V_2O_5 \text{-}nH_2O$                                         | 3 M ZnSO <sub>4</sub>                                                                    | Zn foil                              | 0.3–1.7      | 402 (200 mA g <sup>-1</sup> )   | 98%/1200 cycles (5000 mA g <sup>-1</sup> )     | [\$78] |
| $Ag_{0.33}V_2O_5$                                                                     | 2 M ZnSO <sub>4</sub>                                                                    | Zn foil                              | 0.4–1.4      | 350 (50 mA g⁻¹)                 | 83%/100 cycles                                 | [\$79] |
|                                                                                       |                                                                                          |                                      |              |                                 | (1000 mA g <sup>-1</sup> )                     |        |
| $Ba_{1.2}V_6O_{16}\cdot 3H_2O$                                                        | 2 M ZnSO <sub>4</sub>                                                                    | Zn foil                              | 0.3–1.4      | 345.5 (100 mA g⁻¹)              | 95.6%/2000 cycles                              | [\$80] |
|                                                                                       |                                                                                          |                                      |              |                                 | (10000 mA g <sup>-1</sup> )                    |        |
| Co <sub>0.247</sub> V₂O₅·0.944                                                        | 20 m LiTFSI+ 1 m                                                                         | Zn foil                              | 0.6–2.2      | 432 (100 mA g <sup>-1</sup> )   | 90.26%/7500 cycles                             | [\$81] |
| 1120                                                                                  | 211(1131)2                                                                               |                                      |              |                                 | (10000 mA g <sup>-1</sup> )                    |        |
| $NaCa_{0.6}V_6O_{16}\cdot 3H_2$                                                       | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>                                    | Zn foil                              | 0.4–1.5      | 347 (100 mA g <sup>-1</sup> )   | 83%/10000 cycles                               | [\$82] |
| 0                                                                                     |                                                                                          |                                      |              |                                 | (5000 mA g <sup>-1</sup> )                     |        |
| $Zn_xMo_{2.5+y}VO_{9+z}$                                                              | $0.5 \text{ M Zn}(\text{CH}_3\text{COO})_2$                                              | Zn foil                              | 0.01–<br>1.6 | 180 (20 mA g <sup>-1</sup> )    | 66.6%/30 cycles (20 mA g <sup>-1</sup> )       | [\$83] |
| $NH_4V_4O_{10}$                                                                       | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>                                    | Zn foil                              | 0.8–1.7      | 147 (200 mA g <sup>-1</sup> )   | 70.3%/5000 cycles                              | [S84]  |
|                                                                                       |                                                                                          |                                      |              |                                 | (5000 mA g <sup>-1</sup> )                     |        |
| (NH₄)₂V <sub>10</sub> O <sub>25</sub> ⋅8H₂                                            | 2 M ZnSO <sub>4</sub>                                                                    | Zn foil                              | 0.7–1.7      | 228.8 (100 mA g <sup>-1</sup> ) | 90.1%/5000 cycles                              | [\$85] |
| 0                                                                                     |                                                                                          |                                      |              |                                 | (5000 mA g <sup>-1</sup> )                     |        |
| VOPO4                                                                                 | 21 m LiTFSI+ 1 m<br>Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>                    | Zn foil                              | 0.8–2.1      | 139 (50 mA g <sup>-1</sup> )    | 93%/1000 cycles (5000 mA g <sup>-1</sup> )     | [S86]  |
| VOPO4·xH2O                                                                            | 13 m ZnCl <sub>2</sub> + 0.8 m<br>H <sub>3</sub> PO <sub>4</sub>                         | Zn foil                              | 0.7–1.9      | 170 (100 mA g <sup>-1</sup> )   | 87%/500 cycles (2000 mA g <sup>-1</sup> )      | [S87]  |
| Li <sub>3</sub> V <sub>2</sub> (PO <sub>4</sub> ) <sub>3</sub> /C                     | 4 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>                                    | Zn foil                              | 0.2–1.9      | 141 (300 mA g <sup>-1</sup> )   | 99%/4000 cycles (1500 mA g <sup>-1</sup> )     | [\$88] |
| $Na_3V_2(PO_4)_3$                                                                     | 0.5 M Zn(CH <sub>3</sub> COO) <sub>2</sub>                                               | Zn foil                              | 0.8–1.6      | 97 (50 mA g <sup>-1</sup> )     | 74%/100 cycles (50 mA g⁻¹)                     | [\$89] |
| $Na_3V_2(PO_4)_3/C$                                                                   | 0.5 M CH <sub>3</sub> COONa +<br>0.5 M Zn(CH <sub>3</sub> COO) <sub>2</sub>              | Zn foil                              | 0.8–1.7      | 92 (50 mA g <sup>-1</sup> )     | 74%/200 cycles (50 mA g <sup>-1</sup> )        | [S90]  |
| $Na_3V_2(PO_4)_3/rGO$                                                                 | 2 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>                                    | Zn foil                              | 0.6–1.8      | 114 (35 mA g <sup>-1</sup> )    | 75%/200 cycles (50 mA g⁻¹)                     | [\$91] |
| $Na_3V_2(PO_4)_2F_3$                                                                  | 2 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>                                    | Carbon film<br>functionalizing<br>Zn | 0.8–1.9      | 61.7 (20 mA g <sup>-1</sup> )   | 95%/4000 cycles (1000 mA g <sup>-1</sup> )     | [S92]  |
| $Na_3V_2(PO_4)_2O_2F$                                                                 | 1 M NaClO <sub>4</sub> + 0.5 M<br>Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub> /TMP | Zn foil                              | 1.0–2.2      | 126.5 (26 mA g <sup>-1</sup> )  | 83.5%/1000 cycles (130 mA g <sup>-</sup><br>1) | [\$93] |

| VN <sub>0.9</sub> O <sub>0.15</sub>                                                                                | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>                            | Zn foil                      | 0.2-1.8      | 603 (34 mA g <sup>-1</sup> ),   | 100%/1500 cycles                               | [S94]  |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------|--------------|---------------------------------|------------------------------------------------|--------|
|                                                                                                                    |                                                                                  |                              |              | 186 (25500 mA g <sup>-1</sup> ) | (4250 mA g <sup>-1</sup> )                     |        |
| VN <sub>x</sub> O <sub>y</sub>                                                                                     | 2 M ZnSO <sub>4</sub>                                                            | Zn foil                      | 0.4–1.4      | 240 (1000 mA g <sup>-1</sup> )  | 75%/2000 cycles                                | [S95]  |
|                                                                                                                    |                                                                                  |                              |              |                                 | (20000 mA g <sup>-1</sup> )                    |        |
| VS <sub>2</sub>                                                                                                    | $1 \text{ M ZnSO}_4$                                                             | Zn foil                      | 0.4–1.0      | 190 (50 mA g <sup>-1</sup> )    | 98%/200 cycles (500 mA g <sup>-1</sup> )       | [S96]  |
| VS <sub>2</sub>                                                                                                    | water@ZnMOF-808                                                                  | Zn foil                      | 0.4–1.0      | 140 (200 mA g <sup>-1</sup> )   | 89%/250 cycles (200 mA g <sup>-1</sup> )       | [S97]  |
| VS₄/graphene                                                                                                       | 1 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>                            | Zn foil                      | 0.3–1.8      | 180 (1000 mA g <sup>-1</sup> )  | 93.3%/165 cycles (1000 mA g <sup>-</sup><br>1) | [\$98] |
| CuFe(CN) <sub>6</sub>                                                                                              | 0.02 M ZnSO <sub>4</sub>                                                         | Zn foil                      | 0.5–1.4      | 53 (60 mA g <sup>-1</sup> )     | 96%/100 cycles (60 mA g <sup>-1</sup> )        | [S99]  |
| CuFe(CN) <sub>6</sub>                                                                                              | 1 M ZnSO <sub>4</sub>                                                            | Zn foil                      | 1.2–2.1      | 55 (60 mA g <sup>-1</sup> )     | 90%/50 cycles (60 mA g <sup>-1</sup> )         | [S100] |
| CuFe(CN) <sub>6</sub>                                                                                              | 1 M Na <sub>2</sub> SO <sub>4</sub> + 0.01<br>M ZnSO <sub>4</sub>                | Hyper-dendritic<br>Zn        | 1.4–2.1      | 60 (60 mA g <sup>-1</sup> )     | 97%/500 cycles (300 mA g <sup>-1</sup> )       | [S101] |
| $Zn_3[Fe(CN)_6]_2$                                                                                                 | 3 M ZnSO <sub>4</sub>                                                            | Zn foil                      | 0.8–1.9      | 66.5 (60 mA g <sup>-1</sup> )   | 81%/200 cycles (300 mA g <sup>-1</sup> )       | [S102] |
| $Zn_3[Fe(CN)_6]_2$                                                                                                 | 1 M ZnSO <sub>4</sub>                                                            | Zn foil                      | 0.8–1.9      | 65.4 (60 mA g <sup>-1</sup> )   | 80%/200 cycles (300 mA g <sup>-1</sup> )       | [S103] |
| Na <sub>0.61</sub> Fe <sub>1.94</sub> (CN) <sub>6</sub>                                                            | 1 M ZnSO <sub>4</sub>                                                            | Zn foil                      | 0.9–1.6      | 73.5 (100 mA g <sup>-1</sup> )  | 80%/1000 cycles (300 mA g <sup>-1</sup> )      | [S104] |
| Fe[Fe(CN) <sub>6</sub> ]                                                                                           | 0.1 M KCl                                                                        | Zn foil                      | 0.8–<br>2.15 | 142 (416 mA g <sup>-1</sup> )   | 82%/500 cycles (416 mA g <sup>-1</sup> )       | [S105] |
| CoFe(CN) <sub>6</sub>                                                                                              | 4 m Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>                            | Zn foil                      | 0.75-        | 173.4 (300 mA g <sup>-1</sup> ) | 100%/2200 cycles                               | [S106] |
|                                                                                                                    |                                                                                  |                              | 1.9          |                                 | (3000 mA g <sup>-1</sup> )                     |        |
| NiFe(CN) <sub>6</sub>                                                                                              | 0.5 M Na <sub>2</sub> SO <sub>4</sub> + 0.05<br>M ZnSO <sub>4</sub>              | Zn foil                      | 0.9–1.9      | 76.2 (100 mA g⁻¹)               | 81%/1000 cycles (500 mA g <sup>-1</sup> )      | [S107] |
| $Na_2MnFe(CN)_6$                                                                                                   | 1 M Na <sub>2</sub> SO <sub>4</sub> + 1 M<br>ZnSO <sub>4</sub> + SDS             | Zn foil                      | 1.0-2.0      | 137 (160 mA g <sup>-1</sup> )   | 75%/2000 cycles (800 mA g <sup>-1</sup> )      | [S108] |
| Zn <sub>0.32</sub> K <sub>0.86</sub> Ni[Fe(C<br>N) <sub>6</sub> ] <sub>0.95</sub> H <sub>2</sub> O <sub>0.77</sub> | 0.5 M Zn(ClO <sub>4</sub> ) <sub>2</sub> /AN                                     | Zn foil                      | 0.7–1.8      | 55.6 (11.2 mA g <sup>-1</sup> ) | 95%/35 cycles (11.2 mA g <sup>-1</sup> )       | [S109] |
| Calix[4]quinone                                                                                                    | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>                            | Zn foil                      | 0.8–1.3      | 335 (60 mA g <sup>-1</sup> )    | 87%/1000 cycles (500 mA g <sup>-1</sup> )      | [S110] |
| <i>p</i> -Chloranil                                                                                                | $1 \text{ M Zn}(\text{CF}_3\text{SO}_3)_2$                                       | Zn foil                      | 0.8–1.4      | 200 (43 mA g <sup>-1</sup> )    | 65%/200 cycles (217 mA g <sup>-1</sup> )       | [S111] |
| Poly(benzoquinon<br>yl sulfide)                                                                                    | $1 \text{ M Zn}(\text{CF}_3\text{SO}_3)_2$                                       | Zn foil                      | 0.2–1.8      | 203 (20 mA g <sup>-1</sup> )    | 86%/50 cycles (40 mA g <sup>-1</sup> )         | [S112] |
| Polyaniline–<br>Cellulose                                                                                          | 1 M ZnSO <sub>4</sub> + 0.3 M<br>(NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> | Zn-deposited graphite papers | 0.7–1.7      | 142.3 (200 mA g <sup>-1</sup> ) | 84.7%/1000 cycles                              | [S113] |
|                                                                                                                    |                                                                                  |                              |              |                                 | (4000 mA g <sup>-1</sup> )                     | _      |
| Polyaniline                                                                                                        | $1 \text{ M Zn}(\text{CF}_3\text{SO}_3)_2$                                       | Zn foil                      | 0.5–1.5      | 95 (5000 mA g⁻¹)                | 92%/3000 cycles (5000 mA g <sup>-1</sup> )     | [S114] |
| Sulfo self-doped<br>PANI                                                                                           | 1 M ZnSO <sub>4</sub>                                                            | Carbon film<br>coated Zn     | 0.5–1.6      | 184 (200 mA g <sup>-1</sup> )   | 85%/2000 cycles                                | [S115] |
|                                                                                                                    |                                                                                  |                              |              |                                 | (10000 mA g <sup>-1</sup> )                    |        |

| 2-ethynyl(exTTF)                                                            | 1 M Zn(BF <sub>4</sub> ) <sub>2</sub>                                                       | Zn foil | 0.6-1.7 | 133 (2660 mA g <sup>-1</sup> ) | 86%/10000 cycles                           | [S116] |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------|---------|--------------------------------|--------------------------------------------|--------|
|                                                                             |                                                                                             |         |         |                                | (15860 mA g <sup>-1</sup> )                |        |
| Pyrene-<br>4,5,9,10-tetraone                                                | 2 M ZnSO <sub>4</sub>                                                                       | Zn foil | 0.4–1.5 | 336 (40 mA g <sup>-1</sup> )   | 70%/1000 cycles (3000 mA g <sup>-1</sup> ) | [S117] |
| Hydroquinone-<br>COF                                                        | 3 M ZnSO <sub>4</sub>                                                                       | Zn foil | 0.2–1.8 | 276 (125 mA g⁻¹)               | 95%/1000 cycles (3750 mA g <sup>-1</sup> ) | [S118] |
| Mo <sub>6</sub> S <sub>8</sub>                                              | 0.1 M ZnSO <sub>4</sub>                                                                     | Zn foil | 0.25-   | 88 (6.4 mA g <sup>-1</sup> ),  |                                            | [S119] |
|                                                                             |                                                                                             |         | 1.0     | 57 (128 mA g <sup>-1</sup> )   |                                            |        |
| $Mo_6S_8$                                                                   | 1 M ZnSO <sub>4</sub>                                                                       | Zn foil | 0.25-   | 79 (45 mA g <sup>-1</sup> ),   | 98%/150 cycles (180 mA g <sup>-1</sup> )   | [S120] |
|                                                                             |                                                                                             |         | 1.0     | 63 (180 mA g <sup>-1</sup> )   |                                            |        |
| MoS <sub>2</sub>                                                            | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>                                       | Zn foil | 0.2–1.3 | 135 (100 mA g <sup>-1</sup> )  | 87.8%/1000 cycles                          | [S121] |
|                                                                             |                                                                                             |         |         |                                | (1000 mA g <sup>-1</sup> )                 |        |
| MoS <sub>2</sub> -O                                                         | 3 M Zn(CF <sub>3</sub> SO <sub>3</sub> ) <sub>2</sub>                                       | Zn foil | 0.2–1.4 | 232 (100 mA g <sup>-1</sup> )  | 68%/2000 cycles (1000 mA g <sup>-1</sup> ) | [S122] |
| MnS                                                                         | ZnSO <sub>4</sub>                                                                           | Zn foil | 1.0-1.8 | 221 (100 mA g <sup>-1</sup> )  | 63.6%/100 cycles (500 mA g <sup>-1</sup> ) | [S123] |
| LiMn <sub>0.8</sub> Fe <sub>0.2</sub> PO <sub>4</sub>                       | 21 m LiTFSI + 0.5 m                                                                         | Zn foil | 1.0-2.3 | 137 (17 mA g <sup>-1</sup> ),  | 98.9%/150 cycles (51 mA g <sup>-1</sup> )  | [S124] |
|                                                                             | 20304                                                                                       |         |         | 59 (510 mA g <sup>-1</sup> )   |                                            |        |
| LiFePO <sub>4</sub>                                                         | CH <sub>3</sub> COOLi (15 wt%)<br>+ Zn(CH <sub>3</sub> COO) <sub>2</sub> (15<br>wt%)        | Zn foil | 0.5–1.7 | ~155 (0.2 C)                   | ~100%/125 cycles (1 C)                     | [S125] |
| LiCo <sub>1/3</sub> Mn <sub>1/3</sub> Ni <sub>1/3</sub> P<br>O <sub>4</sub> | 1 M ZnSO₄ + 1M<br>LiOH                                                                      | Zn foil | 0.5–1.7 | 45 (20 mA)                     |                                            | [S126] |
| LiNi <sub>1/3</sub> Co <sub>1/3</sub> Mn <sub>1/3</sub> O<br>2              | 0.25 M Li <sub>2</sub> SO <sub>4</sub> +<br>0.125 M<br>Zn(CH <sub>3</sub> COO) <sub>2</sub> | Zn foil | 1.0–1.9 | 115 (0.5 C)                    | 99%/40 cycles (0.5 C)                      | [S127] |

## Supplementary references

- S1. M. H. Alfaruqi, J. Gim, S. Kim, J. Song, J. Jo, S. Kim, V. Mathew, J. Kim, J. Power Sources, 2015, 288, 320–327.
- S2. B. Lee, H. R. Lee, H. Kim, K. Y. Chung, B. W. Cho, S. H. Oh, Chem. Commun., 2015, 51, 9265–9268.
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K. S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, Nat. Energy, 2016, 1, 16039.
- S4. Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li, Y. Zhang, C. Wang, G. Cui, Energy Environ. Sci., 2019, 12, 1938–1949.
- S5. F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li, J. Fan, C. Zhi, *Energy Environ. Sci.*, 2019, **12**, 706–715.
- S6. D. Xu, B. Li, C. Wei, Y.-B. He, H. Du, X. Chu, X. Qin, Q.-H. Yang, F. Kang, Electrochim. Acta, 2014, 133, 254–261.
- S7. B. Lee, C. S. Yoon, H. R. Lee, K. Y. Chung, B. W. Cho, S. H. Oh, Sci. Rep., 2014, 6, 6066.
- S8. B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, L. Mai, Small, 2018, 14, 1703850.
- S9. Y. Huang, J. Liu, Q. Huang, Z. Zheng, P. Hiralal, F. Zheng, D. Ozgit, S. Su, S. Chen, P.-H. Tan, S. Zhang, H. Zhou, npj Flexible Electronics, 2018, 2, 21.
- S10.N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. Chen, Nat. Commun., 2017, 8, 405.
- S11.S. Islam, M. H. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Kim, J. Jo, J. P. Baboo, D. T. Pham, D. Y. Putro, Y.-K. Sun, J. Kim, J. Mater.Chem. A 2017, 5, 23299–23309.
- S12. M. H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J. P. Baboo, S. H. Choi, J. Kim, *Chem. Mater.*, 2015, 27, 3609– 3620.
- S13. M. H. Alfaruqi, J. Gim, S. Kim, J. Song, D. T. Pham, J. Jo, Z. Xiu, V. Mathew, J. Kim, *Electrochem. Commun.*, 2015, 60, 121–125.
- S14.N. Qiu, H. Chen, Z. Yang, S. Sun, Y. Wang, *Electrochim. Acta*, 2018, 272, 154–160.
- S15.S. Khamsanga, R. Pornprasertsuk, T. Yonezawa, A. A. Mohamad, S. Kheawhom, Sci. Rep., 2019, 9, 8441.
- S16.S.-D. Han, S. Kim, D. Li, V. Petkov, H. D. Yoo, P. J. Phillips, H. Wang, J. J. Kim, K. L. More, B. Key, R. F. Klie, J. Cabana, V. R. Stamenkovic, T. T. Fister, N. M. Markovic, A. K. Burrell, S. Tepavcevic, J. T. Vaughey, *Chem. Mater.*, 2017, **29**, 4874–4884.
- S17.H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu, P. He, H. Zhou, *Angew. Chem. Int. Ed.*, DOI: 10.1002/anie.202001844.
- S18.J. Wang, J.-G. Wang, H. Liu, C. Wei, F. Kang, J. Mater. Chem. A, 2019, 7, 13727–13735.
- S19.K. W. Nam, H. Kim, J. H. Choic, J. W. Choi, Energy Environ. Sci., 2019, 12, 1999–2009.
- S20.Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang, X. Ji, H. Wang, Angew. Chem. Int. Ed., 2019, 58, 15841–15847.
- S21.W. Sun, F. Wang, S. Hou, C. Yang, X. Fan, Z. Ma, T. Gao, F. Han, R. Hu, M. Zhu, C. Wang, J. Am. Chem. Soc., 2017, 139, 9775–9778.
- S22.J. Hao, J. Mou, J. Zhang, L. Dong, W. Liu, C. Xu, F. Kang, *Electrochim. Acta*, 2018, 259, 170–178.
- S23.C. Zhu, G. Fang, J. Zhou, J. Guo, Z. Wang, C. Wang, J. Li, Y. Tang, S. Liang, J. Mater. Chem. A, 2018, 6, 9677–9683.
  S24.B. Jiang, C. Xu, C. Wu, L. Dong, J. Li, F. Kang, Electrochim. Acta, 2017, 229, 422–428.

S25.S. Bai, J. Song, Y. Wen, J. Cheng, G. Cao, Y. Yang, D. Li, *RSC Adv.*, 2016, **6**, 40793–40798.

- S26.B. H. Zhang, Y. Liu, X. W. Wu, Y. Q. Yang, Z. Chang, Z. B. Wen, Y. P. Wu, Chem. Commun., 2014, 50, 1209–1211.
- S27.T. Sun, Q. Nian, S. Zheng, J. Shi, Z. Tao, Small, 2020, 16, 2000597.

S28.J. Cui, X. Wu, S. Yang, C. Li, F. Tang, J. Chen, Y. Chen, Y. Xiang, X. Wu, Z. He, Front. Chem., 2018, 6, 352.

- S29.G. Fang, C. Zhu, M. Chen, J. Zhou, B. Tang, X. Cao, X. Zheng, A. Pan, S. Liang, Adv. Funct. Mater., 2019, 29, 1808375.
- S30.J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu, Y. Wang, Y. Xia, Nat. Commun., 2018, 9, 2906.
- S31.Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang, Y. Hu, D. Wang, L. Zuin, T. Zhou,Y. Wu, S. Sun, *Adv. Energy Mater.*, 2018, **8**, 1801445.
- S32.F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J. A. Dura, K. Xu, C. Wang, Nat. Mater., 2018, 17, 543–549.
- S33.X. Wu, Y. Xiang, Q. Peng, X. Wu, Y. Li, F. Tang, R. Song, Z. Liu, Z. He, X. Wu, *J. Mater. Chem. A*, 2017, **5**, 17990–17997.
- S34. N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, J. Am. Chem. Soc., 2016, 138, 12894–12901.
- S35.C. Pan, R. G. Nuzzo, A. A. Gewirth, Chem. Mater., 2017, 29, 9351–9359.
- S36.C. Pan, R. Zhang, R. G. Nuzzo, A. A. Gewirth, Adv. Energy Mater., 2018, 8, 1800589.
- S37.P. Hu, M. Yan, T. Zhu, X. Wang, X. Wei, J. Li, L. Zhou, Z. Li, L. Chen, L. Mai, ACS Appl. Mater. Interfaces, 2017, 9, 42717–42722.
- S38.N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang, M. Qiu, J. Xu, Y. Liu, L. Jiao, F. Cheng, ACS Energy Lett., 2018, **3**, 1366-1372.
- S39.X. Chen, L. Wang, H. Li, F. Cheng, J. Chen, J. Energy Chem., 2019, 38, 20-25.
- S40.J. Zhou, L. Shan, Z. Wu, X. Guo, G. Fang, S. Liang, Chem. Commun., 2018, 54, 4457–4460.
- S41.P. Hu, T. Zhu, J. Ma, C. Cai, G. Hu, X. Wang, Z. Liu, L. Zhou, L. Mai, Chem. Commun., 2019, 55, 8486–8489.
- S42.H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju, Z. Chen, Z. Hu, D. Yan, X. Zhou, G. Cui, Nat. Commun., 2019, 10, 5374.
- S43. F. Liu, Z. Chen, G. Fang, Z. Wang, Y. Cai, B. Tang, J. Zhou, S. Liang, Nano-Micro Lett., 2019, 11, 25.
- S44.X. Wang, L. Ma, P. Zhang, H. Wang, S. Li, S. Ji, Z. Wen, J. Sun, Applied Surface Science, 2020, 502, 144207.
- S45.J. Zhao, H. Ren, Q. Liang, D. Yuan, S. Xi, C. Wu, W. Manalastas Jr., J. Ma, W. Fang, Y. Zheng, C.-F. Du, M. Srinivasan, Q. Yan, *Nano Energy*, 2019, **62**, 94–102.
- S46.B. Yin, S. Zhang, K. Ke, T. Xiong, Y. Wang, B. K. D. Lim, W. S. V. Lee, Z. Wang, J. Xue, Nanoscale, 2019, 11, 19723.
- S47.X. Wang, Y. Li, S. Wang, F. Zhou, P. Das, C. Sun, S. Zheng, Z.-S. Wu, Adv. Energy Mater., 2020, 10, 2000081.
- S48. M. Yan, P. He, Y. Chen, S. Wang, Q. Wei, K. Zhao, X. Xu, Q. An, Y. Shuang, Y. Shao, K. Mueller, L. Mai, J. Liu, J. Yang, Adv. Mater., 2018, 30, 1703725.
- S49.L. Chen, Y. Ruan, G. Zhang, Q. Wei, Y. Jiang, T. Xiong, P. He, W. Yang, M. Yan, Q. An, L. Mai, *Chem. Mater.*, 2019, 31, 699–706.
- S50.J. Ding, Z. Du, L. Gu, B. Li, L. Wang, S. Wang, Y. Gong, S. Yang, Adv. Mater., 2018, 30, 1800762.

- S51.X. Dai, F. Wan, L. Zhang, H. Cao, Z. Niu, Energy Storage Mater., 2019, 17, 143–150.
- S52.C. Shen, X. Li, N. Li, K. Xie, J.-G. Wang, X. Liu, B. Wei, ACS Appl. Mater. Interfaces, 2018, 10, 25446–25453.
- S53.D. Kundu, S. Hosseini Vajargah, L. Wan, B. Adams, D. Prendergast, L. F. Nazar, *Energy Environ. Sci.*, 2018, **11**, 881–892.
- S54.P. He, Y. Quan, X. Xu, M. Yan, W. Yang, Q. An, L. He, L. Mai, *Small*, 2017, **13**, 1702551.
- S55.Q. Pang, C. Sun, Y. Yu, K. Zhao, Z. Zhang, P. M. Voyles, G. Chen, Y. Wei, X. Wang, *Adv. Energy Mater.*, 2018, **8**, 1800144.
- S56.N. Zhang, M. Jia, Y. Dong, Y. Wang, J. Xu, Y. Liu, L. Jiao, F. Cheng, Adv. Funct. Mater., 2019, 29, 1807331.
- S57.J. Shin, D. S. Choi, H. J. Lee, Y. Jung, J. W. Choi, Adv. Energy Mater., 2019, 9, 1900083.
- S58.J. Lai, H. Zhu, X. Zhu, H. Koritala, Y. Wang, ACS Appl. Energy Mater., 2019, 2, 1988–1996.
- S59.T. Wei, Q. Li, G. Yang, C. Wang, *Electrochim. Acta*, 2018, 287, 60–67.
- S60. M. H. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Islam, D. T. Pham, J. Jo, S. Kim, J. P. Baboo, Z. Xiu, K. S. Lee, Y. K. Sun, J. Kim, *Chem. Mater.*, 2017, **29**, 1684–1694.
- S61.Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo, W. Zhang, C. Wang, L. Wang, J. Zhou, S. Liang, *Energy Environ. Sci.*, 2018, **11**, 3157–3162.
- S62. P. He, G. Zhang, X. Liao, M. Yan, X. Xu, Q. An, J. Liu, L. Mai, Adv. Energy Mater., 2018, 8, 1702463.
- S63.F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu, J. Chen, Nat. Commun., 2018, 9, 1656.
- S64.Y. Cai, F. Liu, Z. Luo, G. Fang, J. Zhou, A. Pan, S. Liang, Energy Storage Mater., 2018, 13, 168–174.
- S65.V. Soundharrajan, B. Sambandam, S. Kim, M. H. Alfaruqi, D. Y. Putro, J. Jo, S. Kim, V. Mathew, Y.-K. Sun, J. Kim, Nano Lett., 2018, 18, 2402–2410.
- S66.X. Guo, G. Fang, W. Zhang, J. Zhou, L. Shan, L. Wang, C. Wang, T. Lin, Y. Tang, S. Liang, *Adv. Energy Mater.*, 2018, **8**, 1801819.
- S67.B. Sambandam, V. Soundharrajan, S. Kim, M. H. Alfaruqi, J. Jo, S. Kim, V. Mathew, Y.-k. Sun, J. Kim, *J. Mater. Chem. A*, 2018, **6**, 15530.
- S68.L. Zhang, I. A. Rodríguez-Pérez, H. Jiang, C. Zhang, D. P. Leonard, Q. Guo, W. Wang, S. Han, L. Wang, X. Ji, *Adv. Funct. Mater.*, 2019, **29**, 1902653.
- S69.C. Xia, J. Guo, P. Li, X. Zhang, H. N. Alshareef, Angew. Chem. Int. Ed., 2018, 57, 3943–3948.
- S70.X. Liu, H. Zhang, D. Geiger, J. Han, A. Varzi, U. Kaiser, A. Moretti, S. Passerini, *Chem. Commun.*, 2019, **55**, 2265– 2268.
- S71.F. Ming, H. Liang, Y. Lei, S. Kandambeth, M. Eddaoudi, H. N. Alshareef, ACS Energy Lett., 2018, 3, 2602–2609.
- S72.D. Kundu, B. D. Adams, V. Duffort, S. H. Vajargah, L. F. Nazar, Nat. Energy, 2016, 1, 16119.
- S73.J.H. Jo, Y.-K. Sun, S.-T. Myung, J. Mater. Chem. A, 2017, 5, 8367–8375.
- S74.D. Chao, C. Zhu, M. Song, P. Liang, X. Zhang, N. H. Tiep, H. Zhao, J. Wang, R. Wang, H. Zhang, H. Fan, Adv. Mater., 2018, **30**, 1803181.
- S75. C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao, H. N. Alshareef, Adv. Mater., 2018, 30, 1705580.

S76.Z. Peng, Q. Wei, S. Tan, P. He, W. Luo, Q. An, L. Mai, Chem. Commun., 2018, 54, 4041-4044.

- S77.C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang, M. Yan, M. Tian, M. Wang, J. Yang, G. Cao, *Energy Environ. Sci.*, 2019, 12, 2273–2285.
- S78.J. Li, K. McColl, X. Lu, S. Sathasivam, H. Dong, L. Kang, Z. Li, S. Zhao, A. G. Kafizas, R. Wang, D. J. L. Brett, P. R. Shearing, F. Corà, G. He, C. J. Carmalt, I. P. Parkin, *Adv. Energy Mater.*, 2020, **10**, 2000058.
- S79.S. Guo, G. Fang, S. Liang, M. Chen, X. Wu, J. Zhou, Acta Materialia, 2019, 180, 51–59.
- S80.X. Wang, B. Xi, X. Ma, Z. Feng, Y. Jia, J. Feng, Y. Qian, S. Xiong, Nano Lett., 2020, 4, 2899–2906.
- S81.L. Ma, N. Li, C. Long, B. Dong, D. Fang, Z. Liu, Y. Zhao, X. Li, J. Fan, S. Chen, S. Zhang, C. Zhi, Adv. Funct. Mater., 2019, 29, 1906142.
- S82.K. Zhu, T. Wu, K. Huang, Adv. Energy Mater., 2019, 9, 1901968
- S83.W. Kaveevivitchai, A. Manthiram, J. Mater. Chem. A, 2016, 4, 18737–18741.
- S84.G. Yang, T. Wei, C. Wang, ACS Appl. Mater. Interfaces, 2018, 10, 35079–35089.
- S85.T. Wei, Q. Li, G. Yang, C. Wang, J. Mater. Chem. A, 2018, 6, 20402–20410.
- S86.F. Wan, Y. Zhang, L. Zhang, D. Liu, C. Wang, L. Song, Z. Niu, J. Chen, Angew. Chem. Int. Ed., 2019, 58, 7062– 7067.
- S87.H.-Y. Shi, Y. Song, Z. Qin, C. Li, D. Guo, X.-X. Liu, X. Sun, Angew. Chem. Int. Ed., 2019, 58, 16057–16061.
- S88.F. Wang, E. Hu, W. Sun, T. Gao, X. Ji, X. Fan, F. Han, X.-Q. Yang, K. Xu, C. Wang, *Energy Environ. Sci.* 2018, **11**, 3168–3175.
- S89.G. Li, Z. Yang, Y. Jiang, C. Jin, W. Huang, X. Ding, Y. Huang, Nano Energy, 2016, 25, 211–217.
- S90.G. Li, Z. Yang, Y. Jiang, W. Zhang, Y. Huang, J. Power Sources, 2016, 308, 52–57.
- S91.P. Hu, T. Zhu, X. Wang, X. Zhou, X. Wei, X. Yao, W. Luo, C. Shi, K. A. Owusu, L. Zhou, L. Mai, *Nano Energy*, 2019, 58, 492–498.
- S92.W. Li, K. Wang, S. Cheng, K. Jiang, Energy Storage Mater., 2018, 15, 14-21.
- S93.Y. Dong, S. Di, F. Zhang, X. Bian, Y. Wang, J. Xu, L. Wang, F. Cheng, N. Zhang, J. Mater. Chem. A, 2020, 8, 3252– 3261.
- S94.J. Ding, Z. Du, B. Li, L. Wang, S. Wang, Y. Gong, S. Yang, Adv. Mater., 2019, 31, 1904369.
- S95.G. Fang, S. Liang, Z. Chen, P. Cui, X. Zheng, A. Pan, B. Lu, X. Lu, J. Zhou, Adv. Funct. Mater., 2019, 29, 1905267.
- S96.P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, Adv. Energy Mater., 2017, 7, 1601920.
- S97.Z. Wang, J. Hu, L. Han, Z. Wang, H. Wang, Q. Zhao, J. Liu, F. Pan, Nano Energy, 2019, 56, 92–99.
- S98. H. Qin, Z. Yang, L. Chen, X. Chen, L. Wang, J. Mater. Chem. A, 2018, 6, 23757–23765.
- S99. R. Trócoli, F. La Mantia, *ChemSusChem*, 2015, **8**, 481–485.
- S100. V. Renman, D. O. Ojwang, M. Valvo, C. P. Gomez, T. Gustafsson, G. Svensson, J. Power Sources, 2017, 369, 146–153.
- S101. T. Gupta, A. Kim, S. Phadke, S. Biswas, T. Luong, B. J. Hertzberg, M. Chamoun, K. Evans-Lutterodt, D. A.

Steingart, J. Power Sources, 2016, 305, 22–29.

- S102. L. Zhang, L. Chen, X. Zhou, Z. Liu, Sci. Rep., 2015, 5, 18263.
- S103. L. Zhang, L. Chen, X. Zhou, Z. Liu, Adv. Energy Mater., 2015, 5, 1400930.
- S104. L.-P. Wang, P.-F. Wang, T.-S. Wang, Y.-X. Yin, Y.-G. Guo, C.-R. Wang, J. Power Sources, 2017, 355, 18–22.
- S105. B. Abeer, K. Hassan, F. Ahamed, Curr. Nanosci., 2018, 14, 227–233.
- S106. L. Ma, S. Chen, C. Long, X. Li, Y. Zhao, Z. Liu, Z. Huang, B. Dong, J. A. Zapien, C. Zhi, *Adv. Energy Mater.*, 2019, **9**, 1902446.
- S107. K. Lu, B. Song, J. Zhang, H. Ma, J. Power Sources, 2016, **321**, 257–263.
- S108. Z. Hou, X. Zhang, X. Li, Y. Zhu, J. Liang, Y. Qian, J. Mater. Chem. A, 2017, 5, 730–738.
- S109. M. S. Chae, J. W. Heo, H. H. Kwak, H. Lee, S.-T. Hong, Journal of Power Sources, 2017, 337, 204–211.
- S110. Q. Zhao, W. Huang, Z. Luo, L. Liu, Y. Lu, Y. Li, L. Li, J. Hu, H. Ma, J. Chen, Sci. Adv., 2018, 4, eaao1761.
- S111. D. Kundu, P. Oberholzer, C. Glaros, A. Bouzid, E. Tervoort, A. Pasquarello, M. Niederberger, *Chem. Mater.*, 2018, 30, 3874–3881.
- S112. G. Dawut, Y. Lu, L. Miao, J. Chen, Inorg. Chem. Front., 2018, 5, 1391–1396.
- S113. Y. Ma, X. Xie, R. Lv, B. Na, J. Ouyang, H. Liu, ACS Sustainable Chem. Eng., 2018, 6, 8697–8703.
- S114. F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu, J. Chen, Adv. Funct. Mater., 2018, 28, 1804975.
- S115. H.-Y. Shi, Y.-J. Ye, K. Liu, Y. Song, X. Sun, Angew. Chem. Int. Ed., 2018, 59, 16597–16601
- S116. B. Häupler, C. Rössel, A. M. Schwenke, J. Winsberg, D. Schmidt, A. Wild, U. S. Schubert, NPG Asia Mater., 2016, 8, e283.
- S117. Z. W. Guo, Y. Y. Ma, X. L. Dong, J. H. Huang, Y. G. Wang, Y. Y. Xia, Angew. Chem. Int. Ed., 2018, 57, 11737– 11741.
- S118. A. Khayum M, M. Ghosh, V. Vijayakumar, A. Halder, M. Nurhuda, S. Kumar, M. Addicoat, S. Kurungot, R. Banerjee, *Chem. Sci.*, 2019, **10**, 8889–8894.
- S119. M. S. Chae, J. W. Heo, S.-C. Lim, S.-T. Hong. Inorg. Chem., 2016, 55, 3294–3301.
- S120. Y. Cheng, L. Luo, L. Zhong, J. Chen, B. Li, W. Wang, S. X. Mao, C. Wang, V. L. Sprenkle, G. Li, J. Liu, ACS Appl. Mater. Interfaces, 2016, 8, 13673–13677.
- S121. W. Xu, C. Sun, K. Zhao, X. Cheng, S. Rawal, Y. Xu, Y. Wang, *Energy Storage Mater.*, 2019, 16, 527–534.
- S122. H. Liang, Z. Cao, F. Ming, W. Zhang, D. H. Anjum, Y. Cui, L. Cavallo, H. N. Alshareef, *Nano Lett.*, 2019, **19**, 3199–3206.
- S123. W. Liu, J. Hao, C. Xu, J. Mou, L. Dong, F. Jiang, Z. Kang, J. Wu, B. Jiang, F. Kang, Chem. Commun., 2017, 53, 6872–6874.
- S124. J. Zhao, Y. Li, X. Peng, S. Dong, J. Ma, G. Cui, L. Chen, *Electrochem. Commun.*, 2016, **69**, 6–10.
- S125. H. Zhang, X. Wu, T. Yang, S. Liang, X. Yang, Chem. Commun., 2013, 49, 9977–9979.
- S126. S. Kandhasamy, A. Pandey, M. Minakshi, *Electrochim. Acta*, 2012, **60**, 170–176.
- S127. F. Wang, Y. Liu, X. Wang, Z. Chang, Y. Wu, R. Holze, *ChemElectroChem*, 2015, **2**, 1024–1030.