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1  Fundamentals of Machine Learning 

Cross Validation and Correlation Metrics 

Cross validation is a statistical procedure to confirm the validity of discovered correlations. As such, the 

same (or similar) correlation should be observed for different train/test splits.  

The most prominent cross validation scheme is k-fold cross validation. In this approach, the data set is split 

into k (in the example: k = 5) equally sized subsamples. In k independent cross validation steps, all but one 

subsamples are used as training to predict the remaining subsample. 

 

 

Leave-one-out cross validation is, strictly speaking a borderline case of k-fold cross validation, in which 

k equals the number of data points. In a chemical context, especially for multi-component data sets, the 

concept of leave-one-out cross validation can be applied to selected features (e.g. explicit components) only. 

The following example shows leave-one-out cross validation by feature 1.  

 

 

A third approach for cross validation is random cross validation, also referred to as Monte-Carlo cross 

validation. Therefore, for each cross validation set, a new random test-train spilt is generated, using a pre-

defined split ratio.  

 

For a regression task, correlation between predicted and observed values can be measured through the 

squared Pearson Correlation coefficient, given as: 

𝑟2 =
(∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1 )2

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 ⋅ ∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

 

where 𝑥𝑖 and 𝑦𝑖 describe the predicted and observed values, respectively, and 𝑥̅ and 𝑦̅ stand for the mean 

value of predicted and observed values, respectively.  
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Similarly, the mean average error (MAE), and the root mean square error (RMSE), can be calculated: 

MAE =
1

𝑛
⋅ ∑|𝑦𝑖 − 𝑥𝑖|

𝑛

𝑖=1

 

RMSE = √MSE = √
1

𝑛
⋅ ∑(𝑦𝑖 − 𝑥𝑖)2

𝑛

𝑖=1

 

 

For classification tasks, a variety of evaluation metrics exists, and their calculation depends on the number 

of classes. Considering the special case of a binary classification (positive or negative), four different cases 

are possible: true positive (TP), false positive (FP), true negative (TN), false negative (FN) (Table S1). One 

of the most essential metrics is the accuracy which is the proportion of correct among all results: 

accuracy =  
TP + TN

TP + FP + FN + TN
  

However, using the accuracy as a classification metric is often problematic for imbalanced problems, i.e. 

problems with only few actual positives and many actual negatives. In such cases, other metrics have to be 

applied, for example balanced accuracy, precision, recall, Matthew’s correlation coefficient, the Area Under 

the Receiver Operating Characteristic Curve (ROC AUC), or the Area under the Precision Recall Curve.   

Table S1: Possible results of a binary classification. 

 
Actual 

Positive Negative 

P
re

d
ic

te
d
 

Positive True positive (TP) False Positive (FP) 

Negative False negative (FN) True negative (TN) 

 

 

Machine Learning Algorithms 

For a detailed discussion of machine learning algorithms, including the concept, mathematical background, 

and computational implementations, the reader is referred to textbooks of statistical learning / machine 

learning (references 51–54), as well as educative blog entries (reference 55, for introduction only!). Table 

S2 provides an overview of some of the most relevant algorithms for supervised machine learning, along 

with the general concepts, critical aspects and hyperparameters, as well as additional illustrative literature 

references. However, it should be noted that this exemplified overview does not claim to be comprehensive. 
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Table S2: Overview of algorithms for supervised machine learning tasks, as used in the context of 

(molecular) chemistry.  

Algorithm Fundamental Concept 
Additional 

References 

(Multivariate) Linear 

Regression 

target variable is expressed as linear combination of 

features 
 

Logistic Regression 
classification based on linear regression, using a logistic 

function 
 

Bayesian Classifiers 
probabilistic classification based on prior knowledge, 

using Bayes’ theorem 
56 

Decision Tree Learning 
flowchart-like diagrams with branching decision nodes, 

which predict the output as a sequence of queries 
 

Bagging (Bootstrap 

Aggregating) 

ensemble of predictors, e.g. decision trees, each one 

trained on a bootstrap sample of the whole training data 
 

Random Forest 
special case of bagging, in which tree branches are 

generated using a random subset of features 
57 

Gradient Tree Boosting 
ensemble of sequentially generated decision trees, each 

tree focusing on the errors of previous trees 
 

Feedforward Artificial 

Neural Networks 

fully interconnected layers of neurons, each neuron 

receives signals from neurons of previous layer and 

processes them through non-linear activation functions 

8,58 

Recurrent Artificial 

Neural Networks 

neural network in which recursive node connections 

(within a layer, from a node to itself) are possible, 

possess time-dependent behavior 

 

k-Nearest Neighbours 

instance-based algorithm, target of a data point is 

predicted based on its k nearest neighbours in feature 

space, distance-based 

 

Kernel Ridge 

Regression 

linear regression using Kernel functions which map the 

data into a higher-dimensional space 
59 

Support Vector 

Machine 

separation of classes of data points through linear 

hyperplane, uses Kernel functions for mapping into 

higher-dimensional space, where linear separation can 

be achieved 

60 
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2  Representing Organic Molecules 

For a more detailed introduction to molecular representations, the reader is referred to Chemoinformatics 

textbooks (references 61, 62). 

 

Molecular Fingerprints 

With the ascent of compound and reaction databases, different fingerprint-based models have been 

developed. Most algorithms have focused either on substructure keys fingerprints, which encode given 

molecular fragments as queries, or topological fingerprints, which try to encode the topology of the 

molecular graph. Selected examples include: 

Substructure Keys Fingerprints: 

 MACCS Keys Fingerprint (reference 63) 

 PubChem Fingerprint (reference 64) 

 BCI Fingerprint (reference 65) 

Topological Fingerprints: 

 Morgan Fingerprints / Extended-Connectivity Fingerprints (references 12, 66) 

 Daylight Fingerprints (reference 67) 

 Atom Pairs Fingerprint (reference 68) 

Jaeger et al. recently introduced a fingerprint-like feature vector, which was trained by unsupervised 

learning. For further details, see reference 69. 

 

The concept of extended-connectivity fingerprints was recently extended to 3D structure encoding, see 

reference 70. 

 

3D Representations 

Building on the concept of coulomb matrices, further 3D representations have been developed. The 

classification into bags of (similar) bonds is described in reference 71, the concept was later extended to 

many-body potentials, in order to include angle and dihedral potentials (reference 72). Moreover, histogram-

based methods, which build on the distribution of certain bonds, angles or dihedrals within the training data 

set, have been described (see reference 14). 
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3  Property Prediction, Activity Prediction, and Molecular Design 

Quantitative Prediction of Properties and Activities 

Quantitative structure activity- and structure-property prediction models have had a longstanding history 

within chemistry, for the beginnings and recent reviews, see references 73–74 and 75–77, respectively. 

 

Molecular Design 

For further reading on virtual screening and the need for molecule libraries, see references 78–82. 

Early approaches towards de-novo design can be found in reference 82 and references therein. 

The scoring and benchmarking of generative modelling approaches is an ongoing challenge (reference 84), 

albeit examples of prospective usage in the context of drug discovery have been proven (references 85–86). 
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4  Computer-Aided Synthesis Planning 

Reaction Representation, Assessment and Classification 

For a pioneering study on automated reaction role assignment and atom-to-atom mapping, see reference 

87.  

Reaction classification using machine learning and reaction fingerprints is described in reference 88.  

 

Concept of Computer-Aided Synthesis Planning 

For reviews on computer-aided synthesis planning, please refer to references 89–90. The underlying 

concepts as well as early computational approaches to CASP programs are given in references 91–95. 

 

Prediction of Reaction Products / Retrosynthetic Disconnections 

Rule-based methodologies for product / precursor prediction have been the most commonly used approach. 

More information on automated rule extraction is given in reference 96. For a rule-based product prediction 

study on textbook reactions of alkyl halides, see reference 97. A recent example of rule ranking for 

retrosynthetic disconnections using graph convolutional networks can be found in reference 98.  

Rule-based product prediction on the mechanistic level has been pioneered by the Baldi group (reference 

35,99): The initial study combined two neural networks, the first identifying electron sources and sinks and 

the second ranking all possible combinations of these. A recent report picks up the concept of reaction 

product prediction by learning electron movements but circumvents the need for hand-coded elementary 

reactions. The model is currently limited to predicting linear electron flow (LEF) reactions, i.e. reactions 

that can be represented by alternating bond removing and bond forming events. Based on learnable graph 

representations, the model was trained to identify the atom which is most likely to react. The bond addition 

and removing sequence is eventually terminated by a second neural network which learned to identify the 

end of a reaction. This approach was found to outperform other solely data-driven approaches for predicting 

LEF reactions (reference 100). 

More examples of predicting reaction products and retrosynthetic disconnections without the use of reaction 

templates are given in reference 101 (graph-edit based) and references 102–105 (sequence-to-sequence 

models). 

An early example of predicting reaction conditions using machine learning for the Michael addition can be 

found in reference 106. For examples of more general condition prediction tools (as applied by Coley et al., 

reference 34), please refer to references 107,108. 

 

Tree Search Algorithms 

Further details regarding reinforcement learning and Monte Carlo tree search as used in CASP programs 

are depicted in references 109,110. Besides MCTS, policy optimization via reinforcement learning has been 

applied to tree search in CASP. Most likely retrosynthetic disconnections were generated for a large library 

of compounds, using a defined policy. Every route was assigned a cost by a user-defined cost function (i.e. 

synthesis length, synthesis complexity), and the disconnection policy is updated in order to minimize the 
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synthetic cost. By iteratively repeating this learning procedure, the choice of retrosynthetic disconnection 

could be significantly improved (reference 111). 
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5  Quantitative Prediction of Reaction Outcomes 

The quantitative assessment of reaction outcomes (particularly selectivities) has been a focus for almost a 

century, originating from Hammett’s seminal works (see reference 112). In recent years, the group of 

Sigman has driven multivariate linear regression techniques forward, for further reading, see references 

38,113–118.  

Additional reports on the quantitative prediction of reaction outcomes using machine learning are given in 

references 119–121. In particular, classification of reactions into high/low-yielding (ref. 119), yield 

prediction for a deoxyfluorination reaction (ref. 120) as well as site selectivity in C – H functionalization 

reactions (ref. 121) have been investigated. 
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6  Active Learning 

Active learning strategies have become popular for both, continuous and discrete optimization problems.  

For a review on active learning in drug discovery, please refer to reference 122. Further applications of 

active learning in QSAR and reaction optimization are given in references 123 and 124. An approach to 

reaction optimization based on reinforcement learning using the result of one reaction as the feedback 

function can be found in reference 125. Here, a policy is trained to decide which changes have to be made 

to the experimental conditions in order to obtain the optimum yield. The model is however limited, as it is 

based on reaction outcomes of consecutive single experiments and was thus only applied to microdroplet 

reactions. 
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125 Z. Zhou, X. Li and R. N. Zare, ACS Cent. Sci., 2017, 3, 1337–1344.  
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7  Data Acquisition and Data Quality 

For further reading on contemporary high-throughput experimentation in batch and flow, see references 

126–128. More details on reaction assessment via condition- or additive-based screening approaches can 

be found in references 129–131. 
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