Coordination compounds in lithium storage and lithium-ion transport

Jingwei Liu, Daixi Xie, Wei Shi* and Peng Cheng* Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China Email: shiwei@nankai.edu.cn; pcheng@nankai.edu.cn

Electrodes	Materials	Reaction mechanism	Voltage ^a	Capacity ^b	Advantages	Disadvantages	Ref.
			(V)	$(mA h g^{-1})$			
Cathode	Organic materials (1,4-	$C_6H_4O_2+2Li^++2e^-\leftrightarrow Li_2C_6H_4O_2$	2.7	495	High capacity	High solubility and low	13
	benzoquinone)				and low cost	conductivity	
	Lithium-rich layered oxides	LiCoO ₂ ↔CoO ₂ +Li ⁺ +e ⁻	3.7	274	High volumetric	High cost, poor cycling	15
	$(Li_{1+x}M_{1-x}O_2, M = Mn, Ni, Co)$				energy density	stability	
	Polyanionic compounds	LiFePO₄↔FePO₄+Li ⁺ +e ⁻	3.45	170	High stability	Low conductivity	16
	(LiFePO ₄)				and cyclability		
	Spinel oxides	$LiMn_2O_4 \leftrightarrow 2MnO_2 + Li^+ + e^-$	4.0	150	Fast kinetics	High solubility in the	15
	(LiMn ₂ O ₄)					electrolyte	
	Nickel-rich layered oxides (LiNi1-	$LiNi_{0.5}Mn_{1.5}O_2 \leftrightarrow Ni_{0.5}Mn_{1.5}O_2 + Li^+ + e^-$	4.7	146	High operating	Poor cycling and	16
	$_{x}M_{x}O_{2}$, M = Co, Mn and Al)				voltage	thermal stability	
Anode	Conversion-type	$Fe_2O_3+6Li^++6e^-\leftrightarrow 2Fe+3Li_2O$	0.9	1005	High capacity	Large structural change	15
	(Transition metal oxides)					and low conductivity	
	Alloying-type	Sn+4.4Li ⁺ +4.4e ⁻ ↔Li _{4.4} Sn	0.5	990	High capacity	Massive volume	17
	(Si, Sn, P)				and low potential	variation	
	Insertion-type	6C+Li ⁺ +e ⁻ ↔LiC ₆	0.1	370	Fast kinetics and	Low appaits	3
	(Graphite, Li ₄ Ti ₅ O ₁₂)				high abundance	Low capacity	
	Organic materials	$Li_2C_8H_4O_4+2Li^++2e^-\leftrightarrow Li_4C_6H_4O_2$ (insertion reaction)	0.85	301	Fast kinetics	High solubility and low	13
	(Conjugated carboxylates)					conductivity	

Table S1 Electrochemical reaction mechanisms, potentials, and theoretical capacities of representative electrode materials for LIBs

^a Average discharge voltage (vs. Li⁺/Li); ^b theoretical capacity.